• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sobre as Fórmulas

Sobre as Fórmulas

Mensagempor Jhenrique » Seg Dez 10, 2012 18:29

Olá,

Sabemos que num triângulo retângulo é verdadeiro que a soma das áreas dos catetos é igual a área da hipotenusa.

Isto é: a^2+b^2=c^2

Agora, adicionando o conceito de unidade a esta fórmula, como ficaria?

Assim?
(a\;u.c.)^2+(b\;u.c.)^2=(c\;u.c.)^2 sendo: u.c.=unidade\;de\;comprimento

Ou assim?
a^2+b^2=c^2

Sendo:
a=\alpha\;u.c.
b=\beta\;u.c.
c=\gamma\;u.c.

\therefore\;\;(\alpha\;u.c.)^2+(\beta\;u.c.)^2=(\gamma\;u.c.)^2

Bem, o que eu busco saber com essa pergunta!? Em 1º lugar, buscar um padrão para as situações semelhantes, é isso o que fazemos em ciencias exatas, buscamos regras gerais e padrões, e em 2º lugar, na álgebra, existe um elemento para representar uma grandeza, um elemento para representar uma unidade e um elemento para representar o coeficiente desta unidade, então, quero fazer um cara-crachá nas fórmulas matemáticas.

Grato!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Sobre as Fórmulas

Mensagempor delara » Sáb Fev 02, 2013 14:48

Creio que há um equívoco na sua afirmação:

Sabemos que num triângulo retângulo é verdadeiro que a soma das áreas dos catetos é igual a área da hipotenusa.


O Teorema de Pitágoras pode relacionar tanto comprimentos como áreas. Portanto o correto seria:

Sabemos que num triângulo retângulo é verdadeiro que a soma dos comprimentos dos quadrados dos catetos é igual ao quadrado do comprimento da hipotenusa.
Ou
Sabemos que num triângulo retângulo é verdadeiro que a soma das áreas dos quadrados cujos lados são catetos é igual a área do quadrado cujo lado é a hipotenusa.

Mas não consegui entender muito bem a sua dúvida, creio que as duas formas representadas estão corretas.

Pois tendo o Teorema de Pitágoras:

a^2 + b^2 = c^2

As unidades de a são em COMPRIMENTO, ou seja, a = 10cm, a = 20dm, a = 10m, a = 12km, etc.
As unidades de \alpha também estão em comprimento, \alpha = 10cm, \alpha = 20dm, \alpha = 10m, \alpha = 12km, etc.

Implicitamente, as duas formas que você apresentou são a mesma coisa.
delara
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 31, 2013 09:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Exatas/Engenharia
Andamento: cursando

Re: Sobre as Fórmulas

Mensagempor Russman » Sáb Fev 02, 2013 18:16

Quanto a sua afirmação sobre o teorema de pitágoras o amigo ali de cima está correto. Cuidado com as palavras! Se você se preocupa tanto com formalidades é interessante observar bem as afirmações.

Quanto as unidades eu acredito que você está confundindo a economia de notação com a inexistência de dimensão. Existem grandezas que são adimensionais e não é necessário adotar uma unidade para medi-las, como os ângulos por exemplo. No caso do Teorema nós apenas não escrevemos unidade juntamente na fórmula por uma questão de economia de notação e/ou por estar explicito que os termos a , b e c são grandezas de comprimento. Você decide como expor a unidade da grandeza!

E a = a [L].

Usamos [L] para generalizar as unidades de comprimento.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Sobre as Fórmulas

Mensagempor Jhenrique » Dom Fev 03, 2013 01:04

Eu já obtive a resposta que buscava...

pelo menos a conclusão que cheguei foi esta:

grandeza = coeficiente \times unidade

no teorema de pitágoras ( a^2+b^2=c^2 ) , a , b e c são grandezas.

Ter entendido isso de modo explícito para mim foi importante, no entanto, a cada coisa que eu entendo implica em mais duas coisas novas que ainda não entendo... afff

de qualquer forma... obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D