por brunadultra » Qua Jan 23, 2013 20:56
Olá, se alguém puder ajudar nessa questão, agradeço.
Em junho, primeiro mês sob a influência da redução no IPI, as concessionárias baianas
venderam 14,8 mil carros, contra 11,9 mil unidades comercializadas em maio. Com o
resultado, a atividade encerrou o primeiro semestre deste ano no mesmo patamar de
vendas do ano passado, com pouco mais de 68 mil unidades vendidas. (MERCADO...,
2012, p. B 3).
Sabe-se que arredondar um número é trocá-lo por outro mais próximo de uma unidade escolhida.
Assim, arredondando-se para a unidade de milhar mais próxima, os números que representam
a quantidade de automóveis vendidos no primeiro semestre dos anos pares, no período de 2003
a 2012, na Bahia, forma-se o conjunto A.
Nessas condições, sendo B = {b / b é o número de divisores naturais distintos de a, a ? A},
pode-se afirmar que a soma do maior com o menor elemento de B é igual a:
RESP: 128
-
brunadultra
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Nov 07, 2012 23:01
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Teoria dos Números
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [divisores naturais] Questão
por Igor » Sex Ago 05, 2011 23:48
- 2 Respostas
- 1422 Exibições
- Última mensagem por Igor

Ter Ago 09, 2011 15:40
Estatística
-
- números naturais
por jose henrique » Dom Ago 15, 2010 15:24
- 2 Respostas
- 1711 Exibições
- Última mensagem por jose henrique

Seg Ago 16, 2010 10:40
Álgebra Elementar
-
- números naturais
por jose henrique » Seg Ago 16, 2010 11:44
- 0 Respostas
- 1180 Exibições
- Última mensagem por jose henrique

Seg Ago 16, 2010 11:44
Álgebra Elementar
-
- números naturais
por jose henrique » Seg Ago 16, 2010 12:31
- 1 Respostas
- 1633 Exibições
- Última mensagem por MarceloFantini

Ter Ago 17, 2010 00:06
Álgebra Elementar
-
- números naturais
por jose henrique » Ter Ago 24, 2010 23:49
- 3 Respostas
- 2201 Exibições
- Última mensagem por MarceloFantini

Qua Ago 25, 2010 13:13
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.