• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dominio de arco coseno

dominio de arco coseno

Mensagempor timoteo » Dom Jan 20, 2013 19:55

ola, estou tentando encontrar o dominio da funçao f(x)= 2 arc cos (x/2 + 3).

quando calculo eu faço assim...

cos f(x) = 2 . (x/2 + 3) -->

-1\leq x+6 \leq 1 -->

S=[-7, -5].

porem a resposta do livro é realizada como se o dois nao multiplicasse com (cos f(x) = 2 . (x/2 + 3)).

ficando assim:
cosf(x) = x/2 + 3 -->

-1\leq \frac{x}{2} + 3\leq 1 -->

S= [-8, -4].

parece-me que quando procura-se o dominio o dois nao tem relevancia. nao influencia no resultado final.
mas, verifique que o mesmo nao ocorre com a imagem; donde o dois ou qualquer n tem importancia no resultado final...

alguem poderia dizer se estou certo e o porque da aparente exclusão do dois no caso do dominio?
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: dominio de arco coseno

Mensagempor timoteo » Dom Jan 20, 2013 20:23

compreende o valor dois ou n varia simplesmente o valor da imagem, pois se encontra na parte referente a imagem...

:oops:
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: dominio de arco coseno

Mensagempor e8group » Dom Jan 20, 2013 20:24

Boa noite .

Podemos escrever f como composição de duas outras funções multiplicada por uma função constante .

Sejam g,h e s funções definidas por g(x) = 2 , h(x) = arccos(x)\ \tex{e} \ \   s(x) = \frac{x}{2} +  3  ,

temos que ,

f(x) = ((h\circ s)g)(x)  =   h(s(x)) \cdot g(x) .

O domínio da função f será : D_f = D_{h\circ s} \cap D_g .

Como D_g  = \mathbb{R} e D_{h\circ s} = D_h \cap Im_s = [-1,1] .Desta forma ,

D_f = D_{h\circ s} \cap D_g  =   [-1,1] .

Como g é cosntante, segue que : s(x) \in [-1,1] .

Ou seja ,

1 \leq \frac{x}{2} +  3 \geq  - 1 . Espero que ajude !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}