• Anúncio Global
    Respostas
    Exibições
    Última mensagem

sera que esteja certo

sera que esteja certo

Mensagempor gramata » Qua Set 02, 2009 17:05

\documentclass[11pt,icelandic]{article}

\usepackage[icelandic]{babel}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}

\selectlanguage{icelandic}
\author{Paulo Gramata}
\title{Skilaverkefni 2}

\usepackage{amssymb,amsmath,graphicx}


\begin{document}
\maketitle [3] Þrepun\\

11.
Skilgreinum fallið f með eftirfarandi rakningu:

\begin{align*}
f(1)=1\qquad og \qquad f(n)=\sum_{i=1}^{n-1}f(i)\qquad ef \qquad n>1 \\
\end{align*}

Lausn:


\begin{flushleft}
$f(2)=1=2^0$\\
$f(3)=1+1=2^1$\\
$f(4)=1+1+2=4=2^2$\\
$f(5)=1+1+2+4=8=2^3$\\
$f(6)=1+1+2+4+8=16=2^4$\\
$f(n)=2^{n-2}$\\
\end{flushleft}
\begin{equation*}
f(n)=2^0+2^1+2^2+2^3+2^4+\dots + 2^n\\*
\end{equation*}


Fyrir sonnun látum P(n) vera yrdinguna $F(n)=2^{n-2}$ þá gildir :\\
$P(2) : f(2)=2^0$\\
$P(3) : f(3)=2^1$\\
$P(4) : f(4)=2^2$\\
$P(5) : f(5)=2^3$\\
$f(n)=2^{n-2}$\\


(1). \\
P(2)er sönn þvi F(2)$=1=2^0$\\
Og $2^{n-2}=2^{2-2}=2^0$\\
Svo f(2)$=1$\\


(2).\\
Ef P(n) er sönn fyrir n>1 \\
þá er f(n)$=2^{n-2}$\\
P(n) : f(n) $=2^{n-2}$\\
P(n+1) : f(n+1) $=2^{n-2+1}$ \\*
F(n+1) $=2^{n-2+1} $ sem þýdir að P(n+1) er sönn.\\
Þvi er P(n) sönn fyrir öll $n\subset/N $\\
Samkvæmt þrepunar frumsendar////
\end{document}
gramata
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Set 02, 2009 16:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em Matemática
Andamento: cursando

Re: sera que esteja certo

Mensagempor DanielFerreira » Seg Set 28, 2009 10:22

??
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}