• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com Integrais

Limites com Integrais

Mensagempor Tixa11 » Dom Jan 13, 2013 15:11

\lim_{x->{0}^{+}}\int_{x}^{1}\frac{1}{\sqrt[3]{t}}dt

Alguém consegue explicar-me que fazer?
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando

Re: Limites com Integrais

Mensagempor e8group » Dom Jan 13, 2013 18:53

Vamos deixar F(t)  = \int \frac{1}{\sqrt[3]{t} } dt .

1) \int \frac{1}{\sqrt[3]{t} } dt = \int  \frac{1}{t^{1/3} } dt  = \int t^{-1/3} dt .

Resolva 1) pelos métodos usuais .

2 ) \int_x^1 \frac{1}{\sqrt[3]{t} } dt      =  F(1) - F(x) .

Agora note que ,através de 2) ,\lim_{x\to0} \int_x^1 \frac{1}{\sqrt[3]{t} } dt  = \lim_{x\to0}  \left (F(1) - F(x)\right)

tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limites com Integrais

Mensagempor Tixa11 » Dom Jan 13, 2013 19:31

santhiago escreveu:Vamos deixar F(t)  = \int \frac{1}{\sqrt[3]{t} } dt .

1) \int \frac{1}{\sqrt[3]{t} } dt = \int  \frac{1}{t^{1/3} } dt  = \int t^{-1/3} dt .

Resolva 1) pelos métodos usuais .

2 ) \int_x^1 \frac{1}{\sqrt[3]{t} } dt      =  F(1) - F(x) .

Agora note que ,através de 2) ,\lim_{x\to0} \int_x^1 \frac{1}{\sqrt[3]{t} } dt  = \lim_{x\to0}  \left (F(1) - F(x)\right)

tente concluir .





Muito obrigado, afinal era bem simples (;
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.