por sadzinski » Qua Jan 02, 2013 18:55
Quando uma empresa usa x unidades de trabalho e y unidades de capital, sua produção mensal de certo produto é dado por f(x,y)= 32x +20y +3xy -2x² -2,5y². Obtenha os valeres de x e y que maximizam o lucro.
Minha duvida é: a função f(x,y), já esta pronta para ser derivar parcialmente?
As raízes vão me dizer quais são os maxímos e os minimos?
-
sadzinski
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jan 01, 2013 16:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia em Fabricação Mecânica
- Andamento: cursando
por Russman » Qua Jan 02, 2013 21:56
Você precisa obter a função Lucro (

) e então basta que você resolva o sistema

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por young_jedi » Qua Jan 09, 2013 20:36
veja que voce chegou na seguinte relação

resolvendo voce chega em

ai nesta parte voce se confundiu, o correto seria



corrija o resto
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Russman » Qua Jan 09, 2013 21:11
Acredito que houve um erro de digitação, pois x= 20.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por sadzinski » Qui Jan 10, 2013 05:34
Obrigado pela ajuda.
-
sadzinski
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jan 01, 2013 16:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia em Fabricação Mecânica
- Andamento: cursando
por young_jedi » Qui Jan 10, 2013 10:39
verdade
x=20
me confundi na ultima expressão
obrigado por observar russman
valeu ate mais
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Otimização calculo 2
por sadzinski » Qua Jan 09, 2013 17:52
- 0 Respostas
- 692 Exibições
- Última mensagem por sadzinski

Qua Jan 09, 2013 17:52
Cálculo: Limites, Derivadas e Integrais
-
- Otimização calculo 2 ( Um edifício )
por sadzinski » Ter Jan 15, 2013 08:47
- 1 Respostas
- 2918 Exibições
- Última mensagem por young_jedi

Ter Jan 15, 2013 15:04
Cálculo: Limites, Derivadas e Integrais
-
- Otimização calculo 2 (retângulo inscrito em um triângulo)
por sadzinski » Qui Jan 03, 2013 08:39
- 1 Respostas
- 9359 Exibições
- Última mensagem por young_jedi

Qui Jan 03, 2013 11:34
Cálculo: Limites, Derivadas e Integrais
-
- Otimização calculo 2 ( O lucro que uma empresa obtém)
por sadzinski » Qui Jan 10, 2013 11:42
- 3 Respostas
- 3924 Exibições
- Última mensagem por young_jedi

Sex Jan 11, 2013 11:29
Cálculo: Limites, Derivadas e Integrais
-
- Otimizacao
por Taisa » Sex Nov 12, 2010 13:53
- 1 Respostas
- 2024 Exibições
- Última mensagem por MarceloFantini

Sex Nov 12, 2010 14:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.