• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Substituicao algebrica

Substituicao algebrica

Mensagempor lucas7 » Qua Jan 02, 2013 14:51

Alguem pode me explicar como que disso:

\frac{{v}^{2}}{{c}^{2}} = \frac{{2300}^{2}}{{3}^{2}}\times\left(1-\frac{{v}^{2}}{{c}^{2}} \right)

resulta isso?

\frac{v}{c} = \sqrt[]{\frac{1}{1+\frac{{3}^{2}}{{2300}^{2}}}}


muito obrigado desde ja!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Substituicao algebrica

Mensagempor young_jedi » Qua Jan 02, 2013 17:31

\frac{v^2}{c^2}=\frac{2300^2}{3^2}-\frac{2300^2}{3^2}.\frac{v^2}{c^2}

\frac{v^2}{c^2}+\frac{2300^2}{3^2}.\frac{v^2}{c^2}=\frac{2300^2}{3^2}

\frac{v^2}{c^2}\left(1+\frac{2300^2}{3^2}\right)=\frac{2300^2}{3^2}

\frac{v^2}{c^2}=\frac{2300^2}{3^2\left(1+\frac{2300^2}{3^2}\right)}

\frac{v^2}{c^2}=\frac{2300^2}{\left(3^2+2300^2\right)}

\frac{v^2}{c^2}=\frac{2300^2}{2300^2.\left(\frac{3^2}{2300^2}+1\right)}

\frac{v^2}{c^2}=\frac{1}{\left(\frac{3^2}{2300^2}+1\right)}

\left(\frac{v}{c}\right)^2=\frac{1}{\left(\frac{3^2}{2300^2}+1\right)}

\frac{v}{c}=\sqrt{\frac{1}{\left(\frac{3^2}{2300^2}+1\right)}}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Substituicao algebrica

Mensagempor lucas7 » Qua Jan 02, 2013 18:15

entendido, obrigado!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}