• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CONVERGENCIA E SOMA] Somatorio com eq de 2o grau

[CONVERGENCIA E SOMA] Somatorio com eq de 2o grau

Mensagempor lucas7 » Seg Dez 24, 2012 18:18

Determine se a serie converge e, se convergir, encontre sua soma.

\sum_{k=1}^{\infty}1/(9k^2+3k-2)

Eu sei que converge, pois fazendo o teste de mao as parcelas vao diminuindo, a soma seria 1/10 + 1/40 + 1/81...
mas nao sei como descobrir a soma, parece ser uma serie telescopica.

Agradeco muito se alguem puder me ajudar e explicar.

ps:A soma deve dar 4/7!

Abracos e feliz natal!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [CONVERGENCIA E SOMA] Somatorio com eq de 2o grau

Mensagempor young_jedi » Seg Dez 24, 2012 20:47

pensei no seguinte

\sum_{k=1}^{\infty}\frac{1}{9k^2+3k-2}=\sum_{k=1}^{\infty}\frac{1}{9}.\frac{1}{k^2+\frac{k}{3}-\frac{2}{9}}

=\frac{1}{9}\sum_{k=1}^{\infty}\frac{1}{k^2+\frac{k}{3}-\frac{2}{9}}

=\frac{1}{9}\sum_{k=1}^{\infty}\frac{1}{(k-\frac{1}{3})(k+\frac{2}{3})}

=\frac{1}{9}\sum_{k=1}^{\infty}\frac{1}{k-\frac{1}{3}}-\frac{1}{k+\frac{2}{3}}

=\frac{1}{9}\left(\sum_{k=1}^{\infty}\frac{1}{k-\frac{1}{3}}-\sum_{k=1}^{\infty}\frac{1}{k+\frac{2}{3}}\right)

=\frac{1}{9}\left(\sum_{k=1}^{\infty}\frac{3}{3k-1}-\sum_{k=1}^{\infty}\frac{3}{3k+2}\right)

desenvolvendo as somas

\frac{1}{9}\left[\left(\frac{3}{2}+\frac{3}{5}+\frac{3}{8}+\frac{3}{11}\dots\right)-\left(\frac{3}{5}+\frac{3}{8}+\frac{3}{11}\dots\right)\right]

podemos ver que apartir do segundo termo do primeiro pareneteses ele se cancela com os termos do outro parenteses então sobra

\frac{1}{9}.\frac{3}{2}=\frac{1}{6}

não bateu com a respostas que voce deu, tenta dar uma conferida na minha resolução pra ver se tem um erro ou veja o gabarito se não é um erro no gabarito

e feliz natal!!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [CONVERGENCIA E SOMA] Somatorio com eq de 2o grau

Mensagempor lucas7 » Ter Dez 25, 2012 01:26

O seu resultado esta certo! eu olhei o gabarito de uma outra questao por engano, desculpe. A resposta correta eh 1/6! Muitissimo obrigado! :-D :y:
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}