• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função exponencial]

[Função exponencial]

Mensagempor Gustavo Gomes » Qua Dez 12, 2012 22:04

Olá, pessoal.

Seja f(x)={-x}^{2}+2x-3.. Qual o menor valor de {\left(\frac{1}{3} \right)}^{f(x)}?

A resposta é 9.

Desenvolvendo a expressão, cheguei em {3}^{{x}^{2}}.{\left(\frac{1}{9} \right)}^{x}.27, mas daí não consegui pensar em um valor mínimo para essa expressão, para x\in\Re....

Aguardo. Grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Função exponencial]

Mensagempor Russman » Qua Dez 12, 2012 22:58

\left ( \frac{1}{3} \right )^{f(x)} = \frac{1^{f(x)}}{3^{f(x)}} = \frac{1}{3^{f(x)}}

Note que essa expressão, \frac{1}{3^{f(x)}}, irá atingir seu menor valor quanto maior for o seu denominador. Assim, temos de maximizar o termo 3^{f(x)}. Para isto temos de encontrar o maior valor que f(x) pode atingir!

\frac{\mathrm{d} }{\mathrm{d} x}f(x) = 0 \Rightarrow -2x+2 = 0\Rightarrow x=1

Sabemos que a função atinge seu máximo/mínimo em x=1 e este valor corresponde a f(1).

f(1) = -1^2 + 2.1 -3 = -1+2-3 = -2

Portanto, \frac{1}{3^{f(1)}} = \frac{1}{3^{-2}} = 9
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)