• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Problema triângulo

[Cálculo] Problema triângulo

Mensagempor pires_ » Dom Dez 09, 2012 16:22

Se "a" e "b" são as medidas , em metros , dos catetos de um triangulo cuja hipotenusa mede 1 metro , determina o maior valor de 2a+b

Ajuda ?
pires_
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Dez 09, 2012 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: ciências e tecnologia
Andamento: cursando

Re: [Cálculo] Problema triângulo

Mensagempor young_jedi » Dom Dez 09, 2012 18:33

1=a^2+b^2

com isso obtemos

b=\sqrt{1-a^2}

substituindo na expressão que se quer calcular

v=2a+\sqrt{1-a^2}

para calcular o valor maximo da expressão de v, podemos notar que agora ela esta em função de a, portanto podemos utilizar o conceito de derivada para achar seu ponto de maximo

\frac{dv}{da}=2+\frac{1}{2}.\frac{(-2a)}{\sqrt{1-a^2}}=0

então

2-\frac{a}{\sqrt{1-a^2}}=0

2=\frac{a}{\sqrt{1-a^2}}

2.\sqrt{1-a^2}=a

4(1-a^2)=a^2

5a^2=4

a=\sqrt{\frac{4}{5}}

substituindo o valor de a encontra-se o maximo da expressão
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Cálculo] Problema triângulo

Mensagempor pires_ » Dom Dez 09, 2012 20:58

Obrigado :)
pires_
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Dez 09, 2012 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: ciências e tecnologia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}