• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor lorena Kelly » Sáb Dez 01, 2012 20:41

Uma lata cilíndrica é feita para receber 1 litro de óleo. Encontre as dimensões
que maximizam o custo do metal para produzir a lata.
Dica:
Quanto menos metal, menos custo.
Procure utilizar área.
Faça o desenho para representar

h r A
h r V
cilindro ? ?
?
2 2
2
2
+ =
=
)
lorena Kelly
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 01, 2012 20:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Derivada

Mensagempor lorena Kelly » Sáb Dez 01, 2012 20:45

Me ajuda PROFESSORES, não sei fazer este exercicio.
lorena Kelly
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 01, 2012 20:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Derivada

Mensagempor e8group » Sáb Dez 01, 2012 21:28

Dica, Tenta obter uma relação com os seguintes dados :


\begin{cases}A_b = \pi r^2 \\ A_l = 2\pi r h \\ A_t =2A_b + A_l \\ V_c = \pi r ^2 h\end{cases}

Onde :

A_b (Área base)

A_l (Área Lateral)

A_t (Área total )

V_c (Volume do cilindro)

Além das observações proposta pelo seu professor ,observe que a capacidade máxima do volume do cilindro é compativel com um litro de óleo .Em outras palavras ,

Tente concluir ,se não conseguir post algo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada

Mensagempor Cleyson007 » Sáb Dez 01, 2012 21:56

Boa noite Lorena!

Seja bem-vinda ao Ajuda Matemática!

Santhiago, pensei da seguinte forma:

Seja {A}_{t} a área total, r o raio, V o volume, e h a altura.

{A}_{t} = 2.\pi.{r}^{2} + 2.\pi.r.h e v = \pi.h.{r}^{2}

1000 = \pi.h.{r}^{2}h= \frac{1000}{\pi.h.{r}^{2}}{A}_{t}=2\pi{r}^{2}+2\frac{1000}{r}\Rightarrow\,{A}_{t}=\frac{2000}{r}+2\pi{r}^{2}

Derivando em relação a r, temos:

-2000({r})^{-2}+4\pi.r

Derivada da área total --> \frac{-2000+4.\pi.{r}^{3}}{{r}^{2}}

No ponto mínimo temos a derivada acima igual a zero. Logo:

-2000+4.\pi.{r}^{3}=0

r=\sqrt[3]{\frac{10}{2\pi}}

Para a altura, temos:

h=\left( \frac{1000}{\pi.\frac{10}{\sqrt[3]{2\pi}}}\right)^{2}

h=\frac{20}{\sqrt[3]{2.\pi}}

h=2r

Bom, espero que esteja certo.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Derivada

Mensagempor e8group » Dom Dez 02, 2012 20:21

Boa noite , Cleyson007. No meu ponto de vista sua solução estar correta .Porém você mencionou que o volume é igual a 1000 ,isto seria 1000 ml  = 1000\cdot 10^{-3} l = 1 l certo ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada

Mensagempor Cleyson007 » Ter Dez 04, 2012 10:34

Certo Santhiago.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?