por gtei » Qui Nov 22, 2012 18:46
Oi pessoal, tava tentando resolver essa questão da PUCRS de 2007 e acabei me perdendo. Aí vai (tentativa abaixo):
Um ponto se movimenta sobre um plano onde está situado
um referencial cartesiano. Seu trajeto percorre a
circunferência de equação x² + y² = 1 e seu deslocamento
é feito a partir do ponto ( 1, 0 ) no sentido antihorário
até a primeira interseção dessa circunferência
com a reta y = x. Essa interseção é dada pelo ponto
A) (cos0º, sen0º)
B) (sen30º, cos 30º)
C) (cos 45º, sen 45º)
D) (sen 60º, cos60º)
E) (sen90º, cos90º)
O que eu fiz foi o seguinte: desenhei a o círculo com centro (0,0) e raio 1 e a reta y=x. Marquei o ponto 1,0 e fiz a trajetória, até chegar no ponto de interseção, que para mim ficou no segundo quadrante. Agora não sei o que fazer! Como descubro as coordenadas do ponto?
Obrigado!
-
gtei
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Nov 22, 2012 18:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Qui Nov 22, 2012 20:00
Para descrever isto , vamos supor que existe um ponto

simultaneamente pertencente a circunferência e a reta , como

estar no segundo quadrante ,

. Assim ,

. Mas ,

daí ,

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Qui Nov 22, 2012 20:05
Existem algumas formas de encontrar a resposta.
Uma delas é perceber que

denota uma reta que faz um ângulo de

com o eixo x, portanto este será o ângulo. Como o raio é um, podemos descrever o ponto como

.
Outra é resolver de maneira puramente analítica: use que

,

e faça

, assim

.
Usando a relação fundamental temos

, logo

.
Elevando a primeira equação ao quadrado e substituindo segue que

,

e

.
Portanto

ou

.
Disso você conclui que

ou

. Como queremos a primeira interseção, a resposta é

.
Não sei como você andou até a interseção, mas é impossível estar no segundo quadrante. A reta

nunca passa pelo segundo nem quarto quadrantes!
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria analítica estudo da reta ponto de interseção
por jeffersonricardo » Dom Ago 22, 2010 08:27
- 0 Respostas
- 1517 Exibições
- Última mensagem por jeffersonricardo

Dom Ago 22, 2010 08:27
Geometria Analítica
-
- geometria analítica estudo da reta ponto de interseção
por jeffersonricardo » Dom Ago 22, 2010 08:27
- 0 Respostas
- 1383 Exibições
- Última mensagem por jeffersonricardo

Dom Ago 22, 2010 08:27
Geometria Analítica
-
- [Geometria Analítica] Posição relativa entre reta e plano
por jennakusterbeck » Qui Set 20, 2012 13:52
- 4 Respostas
- 3582 Exibições
- Última mensagem por jennakusterbeck

Qui Set 20, 2012 17:18
Geometria Analítica
-
- [Interseção entre planos]
por sulafuly » Dom Mar 02, 2014 01:14
- 0 Respostas
- 2016 Exibições
- Última mensagem por sulafuly

Dom Mar 02, 2014 01:14
Geometria Analítica
-
- Interseção entre planos
por marinasaboia » Sex Jan 08, 2016 14:44
- 1 Respostas
- 3237 Exibições
- Última mensagem por RuuKaasu

Sex Jan 15, 2016 21:52
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.