• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[ANALÍTICA] Interseção entre reta e círculo

[ANALÍTICA] Interseção entre reta e círculo

Mensagempor gtei » Qui Nov 22, 2012 18:46

Oi pessoal, tava tentando resolver essa questão da PUCRS de 2007 e acabei me perdendo. Aí vai (tentativa abaixo):

Um ponto se movimenta sobre um plano onde está situado
um referencial cartesiano. Seu trajeto percorre a
circunferência de equação x² + y² = 1 e seu deslocamento
é feito a partir do ponto ( 1, 0 ) no sentido antihorário
até a primeira interseção dessa circunferência
com a reta y = x. Essa interseção é dada pelo ponto
A) (cos0º, sen0º)
B) (sen30º, cos 30º)
C) (cos 45º, sen 45º)
D) (sen 60º, cos60º)
E) (sen90º, cos90º)

O que eu fiz foi o seguinte: desenhei a o círculo com centro (0,0) e raio 1 e a reta y=x. Marquei o ponto 1,0 e fiz a trajetória, até chegar no ponto de interseção, que para mim ficou no segundo quadrante. Agora não sei o que fazer! Como descubro as coordenadas do ponto?

Obrigado!
gtei
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 22, 2012 18:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [ANALÍTICA] Interseção entre reta e círculo

Mensagempor e8group » Qui Nov 22, 2012 20:00

Para descrever isto , vamos supor que existe um ponto P = (a,a) simultaneamente pertencente a circunferência e a reta , como P estar no segundo quadrante , a > 0 . Assim ,

a^2  + a^2 =  1  \implies 2a^2 = 1  \implies  a^2 = \frac{1}{2}    \therefore   a = \frac{1}{\sqrt{2} }  = \frac{\sqrt{2}}{2} . Mas , sin^2(x) + cos^2(x) =  x^2 + y^2 =   1 daí , P = (sin(45 ^{\circ} ), cos (45^{\circ} ) ) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [ANALÍTICA] Interseção entre reta e círculo

Mensagempor MarceloFantini » Qui Nov 22, 2012 20:05

Existem algumas formas de encontrar a resposta.

Uma delas é perceber que y=x denota uma reta que faz um ângulo de 45^{\circ} com o eixo x, portanto este será o ângulo. Como o raio é um, podemos descrever o ponto como (\cos 45^{\circ}, \sin 45^{\circ}).

Outra é resolver de maneira puramente analítica: use que x = \cos \theta, y = \sin \theta e faça y=x, assim \sin \theta = \cos \theta.

Usando a relação fundamental temos \sin^2 \theta + \cos^2 \theta =1, logo \cos^2 \theta = 1 - \sin^2 \theta.

Elevando a primeira equação ao quadrado e substituindo segue que \sin^2 \theta = 1 - \sin^2 \theta, 2 \sin^2 \theta = 1 e \sin^2 \theta = \frac{1}{2}.

Portanto \sin \theta = \frac{1}{\sqrt{2}} ou \sin \theta = - \frac{1}{\sqrt{2}}.

Disso você conclui que \theta = 45^{\circ} ou \theta = 225^{\circ}. Como queremos a primeira interseção, a resposta é \theta = 45^{\circ}.

Não sei como você andou até a interseção, mas é impossível estar no segundo quadrante. A reta y=x nunca passa pelo segundo nem quarto quadrantes!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}