• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Questão]

[Questão]

Mensagempor JU201015 » Seg Nov 12, 2012 21:05

(UFMG) Seja f(x)={3}^{x}-\frac{{9}^{x}}{4} uma função real de variável real. O conjunto que contém todos os valores de x para os quais f(x)=f(x-1) é?
Eu tentei igualando as duas mas não consegui =/ Como se faz?
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Questão]

Mensagempor MarceloFantini » Seg Nov 12, 2012 21:16

De f(x) = f(x-1) temos que 3^x - \frac{9^x}{4} = 3^{x-1} - \frac{9^{x-1}}{4}. Multiplique tudo por 36 = 9 \cdot 4, daí

36 \cdot 3^x - 3^{2x +2} = 12 \cdot 3^x - 3^{2x +1}.

Em seguida, faça a substituição t = 3^x. Portanto teremos

36t - 9t^2 = 12t - 3t^2.

Termine.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Questão]

Mensagempor JU201015 » Ter Nov 13, 2012 09:59

MarceloFantini escreveu:De f(x) = f(x-1) temos que 3^x - \frac{9^x}{4} = 3^{x-1} - \frac{9^{x-1}}{4}. Multiplique tudo por 36 = 9 \cdot 4, daí

36 \cdot 3^x - 3^{2x +2} = 12 \cdot 3^x - 3^{2x +1}.

Em seguida, faça a substituição t = 3^x. Portanto teremos

36t - 9t^2 = 12t - 3t^2.

Termine.


Você colocou 36t - 9t²=12t -3t²
Mas não seria 36t - 9t²=12t -t² ?
Então fica 8t² + 24t = 0
E no fim, encontrei x=1.
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Questão]

Mensagempor MarceloFantini » Ter Nov 13, 2012 10:03

Você está certa. Ao multiplicar \frac{9^{x-1}}{4} por 36 temos 9 \cdot 4 \cdot \frac{9^{x-1}}{4} = 9^x = 3^{2x}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Questão]

Mensagempor JU201015 » Ter Nov 13, 2012 19:15

JU201015 escreveu:
MarceloFantini escreveu:De f(x) = f(x-1) temos que 3^x - \frac{9^x}{4} = 3^{x-1} - \frac{9^{x-1}}{4}. Multiplique tudo por 36 = 9 \cdot 4, daí

36 \cdot 3^x - 3^{2x +2} = 12 \cdot 3^x - 3^{2x +1}.

Em seguida, faça a substituição t = 3^x. Portanto teremos

36t - 9t^2 = 12t - 3t^2.

Termine.


Você colocou 36t - 9t²=12t -3t²
Mas não seria 36t - 9t²=12t -t² ?
Então fica 8t² + 24t = 0
E no fim, encontrei x=1.


Muitíssimo obrigada! ^^
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: