• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação exponencial]

[Equação exponencial]

Mensagempor JU201015 » Sáb Nov 10, 2012 16:49

{25}^{x}-{3}^{x-1}.{5}^{3}={3}^{x-1}.{5}^{3}-{5}^{2x-1}
Não consigo deixar as bases iguais.
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação exponencial]

Mensagempor MarceloFantini » Sáb Nov 10, 2012 19:21

Lembre-se que 5^{2x-1} = 5^{2x} \cdot 5^{-1} = 25^x \cdot 5^{-1}. Vamos multiplicar a equação toda por 5 e por 3, portanto chegamos em

25^x \cdot 15 - 3^{x} \cdot 5^4 = 3^{x} \cdot 5^4 - 25^x \cdot 3.

Vamos subtrair 3^{x} \cdot 5^4 - 25^x \cdot 3 dos dois lados. Desta forma, obtemos

25^x \cdot 15 + 25^x \cdot 3 - 3^{x} \cdot 5^4 - 3^{x} \cdot 5^4 = 18 \cdot 25^x - 2 \cdot 3^x \cdot 5^4 = 0.

Disso concluímos que 18 \cdot 25^x = 2 \cdot 3^x \cdot 5^4 e \frac{18}{2 \cdot 5^4} = \frac{3^x}{25^x} = \left( \frac{3}{25} \right)^x.

Basta tomar o logaritmo na base \frac{3}{25} e você encontrará x = \log_{\frac{3}{25}} \frac{9}{5^4}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação exponencial]

Mensagempor JU201015 » Sáb Nov 10, 2012 20:00

MarceloFantini escreveu:Lembre-se que 5^{2x-1} = 5^{2x} \cdot 5^{-1} = 25^x \cdot 5^{-1}. Vamos multiplicar a equação toda por 5 e por 3, portanto chegamos em

25^x \cdot 15 - 3^{x} \cdot 5^4 = 3^{x} \cdot 5^4 - 25^x \cdot 3.

Vamos subtrair 3^{x} \cdot 5^4 - 25^x \cdot 3 dos dois lados. Desta forma, obtemos

25^x \cdot 15 + 25^x \cdot 3 - 3^{x} \cdot 5^4 - 3^{x} \cdot 5^4 = 18 \cdot 25^x - 2 \cdot 3^x \cdot 5^4 = 0.

Disso concluímos que 18 \cdot 25^x = 2 \cdot 3^x \cdot 5^4 e \frac{18}{2 \cdot 5^4} = \frac{3^x}{25^x} = \left( \frac{3}{25} \right)^x.

Basta tomar o logaritmo na base \frac{3}{25} e você encontrará x = \log_{\frac{3}{25}} \frac{9}{5^4}.


Eu encontrei que x=2, está certo?
Por nada não mas, eu nunca conseguiria fazer isso =s
Obrigado.
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação exponencial]

Mensagempor MarceloFantini » Sáb Nov 10, 2012 20:05

Está correto, pois \frac{9}{5^4} = \left( \frac{3}{5^2} \right)^2. Não se preocupe, talvez eu não conseguisse quando estava começando a ver o assunto. Apenas continue praticando e compreendendo os conceitos que isto se tornará natural. :)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação exponencial]

Mensagempor JU201015 » Sáb Nov 10, 2012 23:50

MarceloFantini escreveu:Está correto, pois \frac{9}{5^4} = \left( \frac{3}{5^2} \right)^2. Não se preocupe, talvez eu não conseguisse quando estava começando a ver o assunto. Apenas continue praticando e compreendendo os conceitos que isto se tornará natural. :)


Tomara :y:
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: