• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação diferencial - 1

Equação diferencial - 1

Mensagempor Cleyson007 » Qua Nov 07, 2012 21:09

Calcule \int_{}^{}f(x)\,dx = F(x) + c. Em seguida calcule c para que a solução y satisfaça a condição extra apresentada, para

f(x)={cos}^{2}x,\,\,\,\,\,y(\pi)=\frac{\pi}{2}

Por favor, explique-me de uma maneira simples de se entender. Tenho prova de equações diferenciais esse período, e estou perdido na matéria.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação diferencial - 1

Mensagempor young_jedi » Qui Nov 08, 2012 12:40

substituindo f(x)

y=\int cos^2x.dx

utilizando a relação trigonometrica

cos^2x=\frac{1+cos2x}{2}

y=\int \left(\frac{1+cos(2x)}{2}\right).dx

integrando

y=\frac{x}{2}+\frac{sen(2x)}{4}+c

como y(\pi)=\pi/2

y(\pi)=\frac{\pi}{2}+\frac{sen(2\pi)}{4}+c=\frac{\pi}{2}

\frac{\pi}{2}+c=\frac{\pi}{2}

portanto c=0
então a resolução da equação fica

y=\frac{x}{2}+\frac{sen(2x)}{4}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação diferencial - 1

Mensagempor Cleyson007 » Qui Nov 08, 2012 15:46

Young_jedi, pode desenvolver essa parte para mim cos² x = 1 + cos 2x / 2 ?

Agradeço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação diferencial - 1

Mensagempor young_jedi » Qui Nov 08, 2012 15:57

Opa tranquilo Cleyson007

cos(x+x)=cos(x).cos(x)-sen(x).sen(x)

cos(2x)=cos^2(x)-sen^2(x)

mais nos sabemos que

1=cos^2x+sen^2x

somando as duas equações

\begin{array}{ccc}cos(2x)&=&cos^2(x)-sen^2(x)\\1&=&cos^2x+sen^2x\end{array}

cos(2x)+1=2cos^2x

cos^2x=\frac{1+cos(2x)}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação diferencial - 1

Mensagempor Cleyson007 » Qui Nov 08, 2012 16:16

O processo algébrico não é difícil..

Sabe o que acontece? Estou me perdendo é na "manipulação" da artimanha. Nem me passou pela cabeça que teria de começar por aqui cos(x + x).

Dúvida aqui: y=\int_{}^{}\left(\frac{1+cos(2x)}{2} \right)\,dx

Poderia ser assim? y=\frac{1}{2}\int_{}^{}1+cos(2x)\,dx

Outra dúvida: Como surgiu o \frac{sen(2x)}{4} ?

Agradeço,

Cleyson007
Editado pela última vez por Cleyson007 em Qui Nov 08, 2012 16:20, em um total de 1 vez.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação diferencial - 1

Mensagempor young_jedi » Qui Nov 08, 2012 16:19

Sim, pode ser assim
colocar as constantes para fora da integral facilita bastante

o sen(2x)/4 surgiu do processo de integração
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação diferencial - 1

Mensagempor Cleyson007 » Qui Nov 08, 2012 16:36

young_jedi escreveu:o sen(2x)/4 surgiu do processo de integração


Pode me explicar também o procedimento para se chegar em sen (2x) / 4 ?

Agradeço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação diferencial - 1

Mensagempor young_jedi » Qui Nov 08, 2012 16:50

primeiro eu separei em duas integrais

\frac{1}{2}\int 1+cos(2x)dx=\frac{1}{2}\left(\int 1.dx+\int cos(2x)dx\right)

eu fiz integração por substituição

a primeira integral é igual a x

para a segunda eu fiz esta substituição

u=2x

du=2.dx

\int cos(2x)dx=\int \frac{cos(u)du}{2}

\int \frac{cos(u)du}{2}=\frac{1}{2}\int cos(u)du

a intgral de cos(u) é sen(u) (como agente bem sabe de derivda)

\frac{1}{2}\int cos(u)du=\frac{1}{2}sen(u)

substituindo de volta o x

\frac{1}{2}sen(u)=\frac{1}{2}sen(2x)

agora voltando a integral principal

\frac{1}{2}\int 1+cos(2x)dx=\frac{1}{2}\left(x+\frac{sen(2x)}{2}\right)+c

\frac{1}{2}\left(x+\frac{sen(2x)}{2}\right)+c=\frac{x}{2}+\frac{sen(2x)}{4}+c
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação diferencial - 1

Mensagempor MarceloFantini » Qui Nov 08, 2012 17:05

Pela regra da cadeia, lembre-se que (\sin x)' = \cos x. Agora pela regra da cadeia (\sin (2x))' = 2 \cos (2x). Como no caso temos \frac{\cos (2x)}{2} = \frac{(\sin (2x))'}{4}, então \int \frac{\cos (2x)}{2} \,  dx = \frac{\sin (2x)}{4} + C.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D