• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo da derivada

Calculo da derivada

Mensagempor Netolucena » Ter Nov 06, 2012 15:17

ola pessoal agradeço as dicas que vocês todos nos passam, e estou aqui para pedir uma direção com a seguinte derivada , por conta da greve o professor não deu aula e está pedindo um trabalho com algumas coisas assim e não estamos com monitores dai estou meio que sem direção:
g(t) = \frac{t{e}^{2t}}{ln(3t+1)}

posso dizer que ela é

t{e}^{2t}{ln(3t+1)}^{-1}

e fazer

t{e}^{2t}({ln(3t+1)}^{-1})' + (t{e}^{2t})'{ln(3t+1)}^{-1}

ou é errado :s

se sim como deriva esse log ai ?
Netolucena
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 06, 2012 14:41
Formação Escolar: GRADUAÇÃO
Área/Curso: técnico em construção de edifícios
Andamento: cursando

Re: Calculo da derivada

Mensagempor MarceloFantini » Ter Nov 06, 2012 15:35

Sim, está correto o que você escreveu. Se quiser deixar mais claro, escreva g(t) = t e^{2t} (\ln (3t+1))^{-1}.

Para derivar \ln(3t+1) use a regra da cadeia: as funções são f(t) = \ln t e h(t) = 3t+1. Veja que \ln (3t+1) = f(h(t)), e aplicando a regra da cadeia segue que (\ln (3t+1))' = \frac{1}{3t+1} \cdot 3.

Não se esqueça que em (t e^{2t})' você tem uma regra do produto e depois uma regra da cadeia em e^{2t}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Calculo da derivada

Mensagempor Netolucena » Ter Nov 06, 2012 16:09

MarceloFantini escreveu:Sim, está correto o que você escreveu. Se quiser deixar mais claro, escreva g(t) = t e^{2t} (\ln (3t+1))^{-1}.

Para derivar \ln(3t+1) use a regra da cadeia: as funções são f(t) = \ln t e h(t) = 3t+1. Veja que \ln (3t+1) = f(h(t)), e aplicando a regra da cadeia segue que (\ln (3t+1))' = \frac{1}{3t+1} \cdot 3.

Não se esqueça que em (t e^{2t})' você tem uma regra do produto e depois uma regra da cadeia em e^{2t}.


no caso como ln(3t+1) está elevado a -1 me dá

- \frac{3}{(3t+1){ln(3t+1)}^{2}}

não seria ? *-)
Netolucena
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 06, 2012 14:41
Formação Escolar: GRADUAÇÃO
Área/Curso: técnico em construção de edifícios
Andamento: cursando

Re: Calculo da derivada

Mensagempor MarceloFantini » Ter Nov 06, 2012 16:33

Sim, é isto mesmo. Eu só mostrei como derivar \ln(3t+1), mas falta a outra regra da cadeia.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Calculo da derivada

Mensagempor e8group » Ter Nov 06, 2012 16:34

Netolucena , para você check sua derivada , utilize o site wolfram alpha . Ele fornece o resultado e a solução completa . Por exemplo , digite lá : Derivative of ( ln( 3t +1) ) e pressione " ENTER " do seu teclado . Logo aparacerá o resultado , a direita do mesmo , há uma opção " step by step solution " , isto levará vc a solução completa .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Calculo da derivada

Mensagempor Netolucena » Ter Nov 06, 2012 17:03

Obrigado por toda ajuda pessoal . . .
Netolucena
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 06, 2012 14:41
Formação Escolar: GRADUAÇÃO
Área/Curso: técnico em construção de edifícios
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59