• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Equação de limite de duas variáveis reais

[Limites] Equação de limite de duas variáveis reais

Mensagempor Bianca_R » Dom Nov 04, 2012 21:45

Olá de novo,
Não consigo chegar na resposta que essa questão dá como certa.
A equação é:

\lim_{(x,y)\rightarrow({0}^{+}, {1}^{-})}\frac{x + y - 1}{\sqrt{x} - \sqrt{1 + y} }

E a resposta é 0 (zero)
Estava tentando seguir o raciocínio de fazer

\lim_{(x,y)\rightarrow({0}^{+}, {1}^{-})}\frac{x + y - 1}{\sqrt{x} - \sqrt{1 + y} } \Rightarrow \lim_{(x,y)\rightarrow({0}^{+}, {1}^{-})}\frac{(x + y - 1)(\sqrt{x} + \sqrt{1 + y})}{(\sqrt{x} + \sqrt{1 + y}) (\sqrt{x} + \sqrt{1 + y}) } \Rightarrow \lim_{(x,y)\rightarrow({0}^{+}, {1}^{-})}\frac{(x + y - 1)(\sqrt{x} + \sqrt{1 + y})}{x + y + 1} \Rightarrow \lim_{(x,y)\rightarrow({0}^{+}, {1}^{-})}\sqrt{x} + \sqrt{1 + y}
mas isso não dá zero no final. Dá algo perto de 1 não?
No que eu estou errando?
Bianca_R
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Nov 04, 2012 17:03
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Limites] Equação de limite de duas variáveis reais

Mensagempor e8group » Seg Nov 05, 2012 11:19

Sim , a resposta é zero . Perceba que o denominador fica diferente que zero , quando x \to 0^+ e y \to 1^- e também que , \sqrt{0^+} estar bem próximo do zero a direita e \sqrt{1 + 1^-} à esquerda de \sqrt{2} . Já no numerador isto não acontece . Em notação em termos de limites , tendo y \to 1^- .Ficamos com ,




\lim_{x\to0^+} \frac{x}{\sqrt{x} -\sqrt{2}}  = \frac{0^+}{-\sqrt{2}} =  0^-
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}