• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integraçao de potencia e produtos de funçoes trigonometricas

integraçao de potencia e produtos de funçoes trigonometricas

Mensagempor menino de ouro » Dom Nov 04, 2012 19:46

boa noite pessoal! to com duvidas e não consigo resolver esta integral?

\int\frac{sec^4x}{tg^3x} = \frac{(sec^2x)(sec^2x)}{tg^3x} = \int\frac{(1+tg^2x)(sec^2x)}{tg^3x} = \int\frac{sec^2xdx+\int sec^2x.tg^2xdx}{tg^3x}

sei que pela identidade trigonométrica sec^2x=1+tg^2x

será que estou no caminho certo?
abs,
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integraçao de potencia e produtos de funçoes trigonometr

Mensagempor MarceloFantini » Dom Nov 04, 2012 20:50

É interessante perceber que \sec^4 x = \frac{1}{\cos^4 x} e \frac{1}{\tan^3 x} = \frac{\cos^3 x}{\sin^3 x}, portanto \frac{\sec^4 x}{\tan^3 x} = \frac{1}{\cos^4 x} \frac{\cos^3 x}{\sin^3 x} = \frac{1}{\cos x \sin^3 x} = \csc^3 x \sec x.

Editado: corrigi as contas.
Editado pela última vez por MarceloFantini em Seg Nov 05, 2012 10:25, em um total de 1 vez.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: integraçao de potencia e produtos de funçoes trigonometr

Mensagempor menino de ouro » Dom Nov 04, 2012 22:41

entendi as substituições trigonométricas , mas nao entendi como chegou a \frac{cosx}{sin^3x}
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integraçao de potencia e produtos de funçoes trigonometr

Mensagempor MarceloFantini » Seg Nov 05, 2012 10:26

Você tem razão, já editei o post. Contas corrigidas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.