por Marcela123 » Sáb Set 12, 2009 02:29
Gostaria de saber a solução da inequação
log1/3 (x-1) + log1/3 (3x-2)>=-2
obs:
o log ta na base 1/3.
Desde já agradeço!
-
Marcela123
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Set 11, 2009 23:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Lucio Carvalho » Sáb Set 12, 2009 08:25
Olá Marcela,
Tentarei, passo a passo, explicar uma das maneiras de resolver a inequação:

Primeiramente devemos determinar o domínio. Sabemos que só podemos calcular o logarítmo de números positivos, assim:
Domínio = {x E IR: (x - 1) > 0 e (3x - 2) > 0}
![Domínio=]1,+\infty[ Domínio=]1,+\infty[](/latexrender/pictures/1b1a51203702ac3247866a0836017355.png)
Em seguida, vamos usar algumas propriedades dos logarítmos para simplificar a nossa inequação:

![{log}_{\frac{1}{3}}[(x-1).(3x-2)]\geq-2 {log}_{\frac{1}{3}}[(x-1).(3x-2)]\geq-2](/latexrender/pictures/da18575a0ae1757781c8414f86f94bba.png)


Agora, devemos lembrar que a função

é decrescente. Então:


Temos que achar agora as raízes da equação

usando a fórmula resolvente. Assim teremos:
![x=\frac{5+\sqrt[]{109}}{6} x=\frac{5+\sqrt[]{109}}{6}](/latexrender/pictures/dabb305f4b159c617cbb9dd03a50a560.png)
ou
![x=\frac{5-\sqrt[]{109}}{6} x=\frac{5-\sqrt[]{109}}{6}](/latexrender/pictures/00534799b3c5fd0635be670c9e9a75a7.png)
De acordo com o domínio, só podemos usar a primeira raíz:
![x=\frac{5+\sqrt[]{109}}{6} x=\frac{5+\sqrt[]{109}}{6}](/latexrender/pictures/dabb305f4b159c617cbb9dd03a50a560.png)
Finalmente, vamos construir o quadro de sinais (ver anexo) e assim determinar o intervalo, dentro do nosso domínio, onde

Portanto, de acordo com o quadro de sinais, a solução da nossa inequação é o intervalo:
![]1, \frac{5+\sqrt[]{109}}{6}] ]1, \frac{5+\sqrt[]{109}}{6}]](/latexrender/pictures/84fcd32ceb2f04f7b83f61682d82baf8.png)
Como sempre, devemos fazer a verificação. Por exemplo, escolhemos x = 2. Assim:




Verificamos assim que a solução da nossa inequação é o intervalo:
![]1, \frac{5+\sqrt[]{109}}{6}] ]1, \frac{5+\sqrt[]{109}}{6}]](/latexrender/pictures/84fcd32ceb2f04f7b83f61682d82baf8.png)
Espero ter ajudado e até breve!
- Anexos
-

- Quadro de sinais .jpg (5.82 KiB) Exibido 2805 vezes
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Qual é o conjunto solução da inequação logarítmica
por andersontricordiano » Sex Dez 02, 2011 14:53
- 1 Respostas
- 1786 Exibições
- Última mensagem por TheoFerraz

Sex Dez 02, 2011 15:22
Logaritmos
-
- Equação Logarítmica - Não consigo encontrar a Solução !
por Kirie » Seg Out 04, 2010 22:27
- 3 Respostas
- 1967 Exibições
- Última mensagem por MarceloFantini

Ter Out 05, 2010 23:34
Logaritmos
-
- (UF-PA)Encontre a solução real da equação logaritmica
por andersontricordiano » Qua Set 28, 2011 11:23
- 1 Respostas
- 1405 Exibições
- Última mensagem por andersontricordiano

Sex Set 30, 2011 18:30
Logaritmos
-
- Inequação - encontrar conjunto solução
por rafaleans » Sex Mar 14, 2014 09:45
- 1 Respostas
- 1520 Exibições
- Última mensagem por DanielFerreira

Sáb Jul 19, 2014 22:56
Inequações
-
- inequação Logarítmica 2°EM
por Beik » Sex Out 22, 2010 13:28
- 3 Respostas
- 2251 Exibições
- Última mensagem por DanielRJ

Sex Out 22, 2010 15:56
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.