por ricael » Ter Out 23, 2012 11:21
Pessoal nao consigo chegar na resposta desse problema de otmização, se puder um passo a passo agradeço
Se r(x) é a receita proveniente da venda de x ?tens, c(x) é o custo da produção de x ?tens e p(x) = r(x) ? c(x) é o lucro sobre a venda de x ?tens, então, o retorno (receita), o custo e o lucro marginais
provenientes desse n?vel de produção (x ?tens) são dados, respectivamente por dr/dx, dc/dx, dp/dx. Suponha que
r(x) = 9x, c(x) = x³ ? 6x² + 15x, em que x representa milhares de unidades. Há um nivel de
produção que maximize o lucro? Se houver, qual é? Há um nivel de produção que minimize o custo?
R: Sim: x = 2 + ?2 mil unidades ou x = 2 ? ?2 mil unidades. Não
-
ricael
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Out 10, 2012 15:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por ricael » Ter Out 23, 2012 16:25
Muito obrigado young_jedi
vc salvo meus estudos, passei dois dias tentando fazer e vi que meu erro tava em nao fazer a segunda derivada, muito obrigado mesmo!
-
ricael
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Out 10, 2012 15:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- funções custo-receita-lucro
por Black-OuT » Qui Nov 26, 2009 15:15
- 1 Respostas
- 2463 Exibições
- Última mensagem por Neperiano

Sex Set 23, 2011 19:26
Funções
-
- Função Receita e Custo
por tigerwong » Ter Mar 05, 2013 17:24
- 0 Respostas
- 1691 Exibições
- Última mensagem por tigerwong

Ter Mar 05, 2013 17:24
Funções
-
- [receita/custo marginal] Problema
por Revelants » Dom Out 05, 2008 14:32
- 1 Respostas
- 5013 Exibições
- Última mensagem por admin

Ter Out 14, 2008 14:58
Matemática Financeira
-
- Preço de Custo e Lucro
por gustavowelp » Qui Nov 18, 2010 08:52
- 1 Respostas
- 1678 Exibições
- Última mensagem por Rogerio Murcila

Qui Nov 18, 2010 18:27
Matemática Financeira
-
- Custo,Lucro e Venda
por odintrax » Seg Abr 02, 2012 10:45
- 1 Respostas
- 1534 Exibições
- Última mensagem por NMiguel

Seg Abr 02, 2012 11:11
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.