por Fabio Wanderley » Seg Out 22, 2012 18:10
Boa tarde!
Segue o exemplo:
Seja f uma função ímpar e contínua em [-r,r], r > 0. Mostre que:

Solução:
f ímpar <-> f(-x) = -f(x) em [-r,r].
Façamos a mudança de variável u = -x
u = - x; du = - dx
x = - r; u = r
x = r; u = - r

Como f(- u) = - f(u), resulta
(<--- até aqui tudo bem)mas,

(veja observação acima), logo:
(<--- não entendi isso)
(...)
Guidorizzi, p. 322, vol. 1, 5 ed.Estou entendo até chegar a linha que marquei. Depois não consigo entender como ele concluiu a igualdade... e como assim "veja observação acima"? Para mim ficou confuso.
Alguém pode me ajudar?
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por young_jedi » Seg Out 22, 2012 18:40
repare que as duas exprresões representam a mesma integral, apenas se utilizou outro simbolo para representar a variavel
poderia utilizar qualquer simbolo, note que;

é apenas o simbolo da variavel que é diferente mais representam a mesma integral
por isso ele pode fazer a igualdade
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Fabio Wanderley » Seg Out 22, 2012 19:59
young_jedi escreveu:repare que as duas exprresões representam a mesma integral, apenas se utilizou outro simbolo para representar a variavel
poderia utilizar qualquer simbolo, note que;

é apenas o simbolo da variavel que é diferente mais representam a mesma integral
por isso ele pode fazer a igualdade
young_jedi,
Mas se ele definiu que u = - x
e conclui que

como logo depois ele coloca que

???
Não estou conseguindo enxergar como "sumiu" o sinal negativo de um lado da equação...
Agradeço desde já sua atenção!
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por young_jedi » Seg Out 22, 2012 21:31
a questão é que as duas igualdades são verdadeiras
a primeira igualdade ele tirou do fato da função ser impar e continua como voce demonstrou

a segunda ele tirou do fato de ser possivel fazer a substituição que eu desmonstrei

sendo assim as duas igualdades são verdadeiras com isso então nos temos que

mais isso só é possivel se

sendo assim demosntramos aquilo que se queria desde o inicio
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Fabio Wanderley » Seg Out 22, 2012 21:48
Obrigado, young_jedi!
Tinha dado um tempo pra essa questão e voltei agora para vê-la novamente... ficou melhor pra entender
Acho que vou usá-la numa apresentação...
abraço!
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda interpretação
por deividchou » Seg Ago 17, 2015 12:53
- 3 Respostas
- 3900 Exibições
- Última mensagem por AlexCA68

Sáb Mar 12, 2016 14:37
Aritmética
-
- [Limite] Ajuda com demonstração
por ghf » Sex Nov 02, 2012 22:31
- 1 Respostas
- 1387 Exibições
- Última mensagem por MarceloFantini

Sex Nov 02, 2012 22:39
Cálculo: Limites, Derivadas e Integrais
-
- [Equação Diferencial]Ajuda num passo de uma demonstração
por Bravim » Qui Abr 09, 2015 18:14
- 0 Respostas
- 725 Exibições
- Última mensagem por Bravim

Qui Abr 09, 2015 18:14
Cálculo: Limites, Derivadas e Integrais
-
- Interpretação dos Monômios
por Jhenrique » Sáb Nov 10, 2012 18:57
- 8 Respostas
- 6476 Exibições
- Última mensagem por Jhenrique

Ter Jan 01, 2013 17:31
Álgebra Elementar
-
- Interpretação dessa questão
por Joelson » Dom Jun 21, 2009 17:22
- 2 Respostas
- 2817 Exibições
- Última mensagem por Joelson

Dom Jun 21, 2009 19:13
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.