• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada Função Trigonometricas

Derivada Função Trigonometricas

Mensagempor mayconf » Qua Out 10, 2012 16:37

y= cotg\left({x}^{3}+3 \right)sec\left(sec\sqrt[]{x}+1 \right)

Eu cheguei nisso num sei se esta correto.
y'=-3{x}^{2}cossec{}^{2}\left({x}^{3}+3 \right)sec\left(\sqrt[]{x}+1 \right)+\frac{1}{2}{x}^{\frac{-1}{2}}sec\left(\sqrt[]{x}+1 \right)tg\left(\sqrt[]{x}+1 \right)cotg\left({x}^{3}+3 \right)
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada Função Trigonometricas

Mensagempor MrJuniorFerr » Qua Out 10, 2012 17:42

Derivei aqui e o meu resultado sem simplificação/utilizar identidades trigonométricas, ficou:

y' = -3x^2cossec^2(x^3+3).sec(sec\sqrt[]{x}+1)+cotg(x^3+3)sec(sec \sqrt[]{x}+1)tg(sec\sqrt[]{x}+1)sec\sqrt[]{x}tg\sqrt[]{x}\frac{1}{2}x^\frac{-1}{2}
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: Derivada Função Trigonometricas

Mensagempor e8group » Qua Out 10, 2012 18:43

Uma dica : Para auxiliar o estudo ,como verificação de derivadas utilize o site wolframalpha . Veja como y fica derivado de acordo com o site acima .


http://www.wolframalpha.com/input/?i=%2 ... 7&dataset=
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?