• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinantes - cálculo matriz nxn (aplicar propriedades)

Determinantes - cálculo matriz nxn (aplicar propriedades)

Mensagempor emsbp » Qua Out 10, 2012 09:25

Bom dia.
É pedido para calcular o determinante da seguinte matriz\begin{pmatrix}
   a & a & a... a  \\ 
   1 & a+1 & 1 ... 1 \\
   1 & 1 &a+1 ...1\\
   ...   ....\\
1 & 1& 1 ... a+1
\end{pmatrix}.
Sei que é necessário aplicar alguma propriedade dos determinantes. No entanto, nas propriedades que pesquisei em http://www.igm.mat.br, não consegui encontrar uma que se aplique. O que estarei a fazer mal?
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Determinantes - cálculo matriz nxn (aplicar propriedades

Mensagempor young_jedi » Qua Out 10, 2012 14:31

reescrevendo a matriz

\left(\begin{array}{cccccc}a&0&0&0&\dots&0\\1&a&0&0&\dots&0\\1&0&a&0&\dots&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\1&0&0&0&\dots&a\end{array}\right).
\left(\begin{array}{cccccc}1&1&1&1&\dots&1\\0&1&0&0&\dots&0\\0&0&1&0&\dots&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&0&\dots&1\end{array}\right)=
\left(\begin{array}{cccccc}a&a&a&a&\dots&a\\1&a+1&1&1&\dots&1\\1&1&1+a&1&\dots&1\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\1&1&1&1&\dots&a+1\end{array}\right)

utilizando a propriedade que diz

det(A.B)=det(A).det(B)

chega-se ao determinante da matriz
note tambem que as matrizez A e B nesse caso são matrizes triangulares, ou seja os elementos acima ou abaixo de sua diagonal são iguais a zero, e em uma matriz assim o determinante é igual ao produto dos elementos da diagonal principal
com isso da pra determinar os dois determinantes e encontrar o determinante final pela regra do produto.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Determinantes - cálculo matriz nxn (aplicar propriedades

Mensagempor emsbp » Qua Out 10, 2012 16:43

OK!
Muito obrigado. Ajuda preciosa.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.