• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinantes - cálculo matriz nxn (aplicar propriedades)

Determinantes - cálculo matriz nxn (aplicar propriedades)

Mensagempor emsbp » Qua Out 10, 2012 09:25

Bom dia.
É pedido para calcular o determinante da seguinte matriz\begin{pmatrix}
   a & a & a... a  \\ 
   1 & a+1 & 1 ... 1 \\
   1 & 1 &a+1 ...1\\
   ...   ....\\
1 & 1& 1 ... a+1
\end{pmatrix}.
Sei que é necessário aplicar alguma propriedade dos determinantes. No entanto, nas propriedades que pesquisei em http://www.igm.mat.br, não consegui encontrar uma que se aplique. O que estarei a fazer mal?
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Determinantes - cálculo matriz nxn (aplicar propriedades

Mensagempor young_jedi » Qua Out 10, 2012 14:31

reescrevendo a matriz

\left(\begin{array}{cccccc}a&0&0&0&\dots&0\\1&a&0&0&\dots&0\\1&0&a&0&\dots&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\1&0&0&0&\dots&a\end{array}\right).
\left(\begin{array}{cccccc}1&1&1&1&\dots&1\\0&1&0&0&\dots&0\\0&0&1&0&\dots&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&0&\dots&1\end{array}\right)=
\left(\begin{array}{cccccc}a&a&a&a&\dots&a\\1&a+1&1&1&\dots&1\\1&1&1+a&1&\dots&1\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\1&1&1&1&\dots&a+1\end{array}\right)

utilizando a propriedade que diz

det(A.B)=det(A).det(B)

chega-se ao determinante da matriz
note tambem que as matrizez A e B nesse caso são matrizes triangulares, ou seja os elementos acima ou abaixo de sua diagonal são iguais a zero, e em uma matriz assim o determinante é igual ao produto dos elementos da diagonal principal
com isso da pra determinar os dois determinantes e encontrar o determinante final pela regra do produto.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Determinantes - cálculo matriz nxn (aplicar propriedades

Mensagempor emsbp » Qua Out 10, 2012 16:43

OK!
Muito obrigado. Ajuda preciosa.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59