• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parabola

Parabola

Mensagempor Claudin » Ter Out 09, 2012 20:13

Gostaria de saber quando usar

(y-y_0)^2=2p(x-x_0)

E quando usar

(y-y_0)^2=-2p(x-x_0)

Tem algo haver com o foco?

EXEMPLO:

F(\frac{2}{3},0)

e

F(0,-\frac{4}{3})
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parabola

Mensagempor young_jedi » Ter Out 09, 2012 22:09

p é a distancia entre o foco e a reta diretriz

se o foco esta a direita da reta diretriz então utiliza a primeira equação
se estiver a esquerda utiliza a segunda equação

deve-se saber respeito da diretriz para determinar isto.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Parabola

Mensagempor Claudin » Ter Out 09, 2012 22:12

E como saber se o foco é para esquerda ou direita?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parabola

Mensagempor young_jedi » Ter Out 09, 2012 22:24

no exercicio tem que estar explicado sobre a diretriz ou sobre o vertice.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Parabola

Mensagempor Claudin » Ter Out 09, 2012 22:29

Se tiver vertice

(0,-2) ?

(0,2) ?

(2,0) ?

(-2,0) ?

qual tipo de equação utiliza em cada um dos casos acima?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parabola

Mensagempor young_jedi » Ter Out 09, 2012 22:34

o vertice esta na metade da distancia entre o foco e a reta diretriz
então se o foco estiver a direita do vertice ele tambem esta a direita da reta diretriz

a distancia entre o foco e a reta diretriz é p e a distancia entre o foco e o vertice ou entre o vertice e a reta diretriz é
\frac{p}{2}

para qual foco é cada um dos casos?
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Parabola

Mensagempor Claudin » Ter Out 09, 2012 22:37

sim, cada vertice acima, significa um caso diferente, ou seja, 4 casos
e nao sao focos, sao vertices
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parabola

Mensagempor young_jedi » Ter Out 09, 2012 22:43

è que para cada caso voce tem que ter o vertice e o foco
so com o vertice ou so com o foco nao da para determinar a equação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Parabola

Mensagempor Claudin » Ter Out 09, 2012 22:45

Eu nao quero a equação da parabola nao
eu quero saber qual equação utilizar nesses 4 casos acima

sendo as duas equações

(y-y_0)^2=2p(x-x_0)

E quando usar

(y-y_0)^2=-2p(x-x_0)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parabola

Mensagempor young_jedi » Ter Out 09, 2012 22:51

vamos supor para o primeiro caso

v=(0,-2)

se o foco for por exemplo (1,-2)

então o foco esta a direita do vertice portanto a equação é

(y-y_0)^2=2p(x-x_0)

mais vamos supor que o foco fosse (-1,-2) então seria

(y-y_0)^2=-2p(x-x_0)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Parabola

Mensagempor Claudin » Ter Out 09, 2012 22:54

infelizmente nao consigo entender completamente
quando usar uma equação e quando usar outra

mas valeu a intenção
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parabola

Mensagempor young_jedi » Ter Out 09, 2012 22:56

voce tem que ter a informação de qual é o foco e qual é o vertice
so assim voce consegue determinar qual equação utilizar, conhecendo so um não da para saber qual equação usar
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Parabola

Mensagempor Claudin » Ter Out 09, 2012 23:01

blz.
caso 1
sendo F(-a,0)
diretriz (x=a)

caso 2
F(a,0)
diretriz (x=-a)

caso 3
F(0,a)
diretriz (y=-a)

caso 4
F(0,-a)
diretriz (y=a)

como ficaria em cada um dos casos?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parabola

Mensagempor young_jedi » Ter Out 09, 2012 23:12

caso 1:

-a<a

então o foco esta a esquerda da diretriz então a equação é

(y-y_0)^2=-2p(x-x_0)

caso2:

a>-a

então o foco esta a direita da diretriz a equação é

(y-y_0)^2=-2p(x-x_0)

no caso 3 e no caso 4 a equação muda um pouco pos agora a diretriz esta em uma reta paralela ao eixo x e não ao y como os anteriores

caso3:

a>-a

então o foco esta acima da reta diretriz a equação é

(x-x_0)^2=2p(y-y_0)


caso 4:

-a<a

o foco esta abaixo da diretriz a equação é

(x-x_0)^2=-2p(y-y_0)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Parabola

Mensagempor Claudin » Ter Out 09, 2012 23:17

Agora sim compreendi

Muito obrigado pela explicação

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?