• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por frações racionais] Resposta diferente

[Integração por frações racionais] Resposta diferente

Mensagempor rafiusk » Dom Out 07, 2012 00:44

\int\frac{5x-2}{x^2-4} essa integral no meu desenvolvimento deu \frac{1}{2}*ln\left|x-2 \right| - \frac{1}{3}*ln\left|x+2 \right| + c.

Já na resposta do professor deu a seguinte ln\left|(x-2)^2(x+2)^3 \right| + c sei que ele simplifica ao máximo. Minha resposta simplificando não ficaria igual não né?
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integração por frações racionais] Resposta diferente

Mensagempor MrJuniorFerr » Dom Out 07, 2012 02:24

rafiusk escreveu:\int\frac{5x-2}{x^2-4} essa integral no meu desenvolvimento deu \frac{1}{2}*ln\left|x-2 \right| - \frac{1}{3}*ln\left|x+2 \right| + c.

Já na resposta do professor deu a seguinte ln\left|(x-2)^2(x+2)^3 \right| + c sei que ele simplifica ao máximo. Minha resposta simplificando não ficaria igual não né?


\frac{1}{2}*ln\left|x-2 \right| - \frac{1}{3}*ln\left|x+2 \right| + c

ln|x-2|^\frac{1}{2} - ln|x+2|^\frac{1}{3} + c

ln\frac{|x-2|^\frac{1}{2}}{|x+3|^\frac{1}{3}} + c

Não sei o que fazer após isto...
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integração por frações racionais] Resposta diferente

Mensagempor MarceloFantini » Dom Out 07, 2012 03:39

Quais foram as frações parciais que você encontrou? Poste estes cálculos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integração por frações racionais] Resposta diferente

Mensagempor rafiusk » Dom Out 07, 2012 16:43

MarceloFantini escreveu:Quais foram as frações parciais que você encontrou? Poste estes cálculos.



\frac{a}{x-2}+\frac{b}{x+2} depois substitui por x=-2 e x =2 para zerar A e dps B.

Ficou assim \frac{1}{2}\int\frac{dx}{x-2} - \frac{1}{3}\int\frac{dx}{x+2}

Que resultou naquele resultado do primeiro post.
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integração por frações racionais] Resposta diferente

Mensagempor MarceloFantini » Dom Out 07, 2012 20:14

Por que você inverteu a e b? Quando for integrar isto torna-se

\int \frac{5x-2}{x^2 -4} \, dx = a \int \frac{1}{x-2} \, dx + b \int \frac{1}{x+2} \, dx,

enquanto que você escreveu \frac{1}{a} e \frac{1}{b}, respectivamente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integração por frações racionais] Resposta diferente

Mensagempor rafiusk » Seg Out 08, 2012 04:16

Vlw Marcelo refiz aqui e deu tudo certo. Obrigado.
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59