por MrJuniorFerr » Dom Out 07, 2012 02:49
Deduza uma equação do plano definido pelo eixo z e pelo ponto (4,4,1). Tentei resolver este exercício e não consegui...
Quando uma equação do plano é definida pelo eixo z, a variável z é livre?
A equação do plano é:

, se a variável z é livre, temos:

Mas, como podem ver, ainda não tenho o vetor normal

(perpendicular) ao plano. Como posso acha-lo concluir o exercício?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por young_jedi » Dom Out 07, 2012 13:16
se a equação é definida pelo exio z então o plano contem o eixo z
ou seja qualquer ponto sobre o eixo z é um ponto do plano
sendo o ponto P=(0,0,1) este ponto faz parte do ponto
sendo a orgiem do sistema O=(0,0,0) e o ponto A={4,4,1}
o produto vetorial

nos fornece o vetor normal ao plano
então um ponto B=(x,y,z)
o produto escalar dos vetores

e

é igual a zero

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por MrJuniorFerr » Dom Out 07, 2012 16:39
young_jedi escreveu:se a equação é definida pelo exio z então o plano contem o eixo z
ou seja qualquer ponto sobre o eixo z é um ponto do plano
sendo o ponto P=(0,0,1) este ponto faz parte do ponto
sendo a orgiem do sistema O=(0,0,0) e o ponto A={4,4,1}
o produto vetorial

nos fornece o vetor normal ao plano
então um ponto B=(x,y,z)
o produto escalar dos vetores

e

é igual a zero

Cheguei no resultado young_jedi.
Para qualquer plano o ponto de origem O(0,0,0) é pertencente e posso usa-lo para criar vetores?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por young_jedi » Dom Out 07, 2012 17:21
O ponto O=(0,0,0) não pertencente a todos os planos, nesse caso nos sabemos que é
porque o eixo z pertence ao plano como diz o enunciado, e o ponto (0,0,0) pertence ao exio z
então o ponto O pertence a esse plano.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação de planos] Dúvida exercício
por MrJuniorFerr » Sáb Out 06, 2012 17:16
- 2 Respostas
- 3847 Exibições
- Última mensagem por MrJuniorFerr

Sáb Out 06, 2012 18:19
Geometria Analítica
-
- [Equação de planos] Dùvida exercício 2
por MrJuniorFerr » Sáb Out 06, 2012 20:39
- 14 Respostas
- 8596 Exibições
- Última mensagem por young_jedi

Dom Out 07, 2012 19:07
Geometria Analítica
-
- [Equação de planos] Dúvida exercício 4
por MrJuniorFerr » Seg Out 08, 2012 07:40
- 1 Respostas
- 1248 Exibições
- Última mensagem por young_jedi

Seg Out 08, 2012 10:06
Geometria Analítica
-
- [Equação de planos] Dúvida exercício 5
por MrJuniorFerr » Qui Out 11, 2012 08:58
- 4 Respostas
- 1972 Exibições
- Última mensagem por MrJuniorFerr

Qui Out 11, 2012 12:43
Geometria Analítica
-
- [Equação de planos] Dúvida exercício 6
por MrJuniorFerr » Qui Out 11, 2012 20:43
- 8 Respostas
- 3338 Exibições
- Última mensagem por MrJuniorFerr

Qui Out 11, 2012 21:39
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.