• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL INDEFINIDA] Substituição

[INTEGRAL INDEFINIDA] Substituição

Mensagempor fabriel » Qua Out 03, 2012 13:24

E ai pessoal, to em duvida, nessa questão, em que é dado essa integral:
\int_{}^{} \frac{dx}{x^2+a^2},a\neq0

Então deve se usar o metodo por substituição né, então comecei chamando:

u=x^2+a^2

então

du=2xdx

Mas agora, como q eu substituo se tem o x la pra incomodar??
Obrigado!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL INDEFINIDA] Substituição

Mensagempor LuizAquino » Qua Out 03, 2012 14:10

fabriel escreveu:E ai pessoal, to em duvida, nessa questão, em que é dado essa integral:
\int_{}^{} \frac{dx}{x^2+a^2},a\neq0

Então deve se usar o metodo por substituição né, então comecei chamando:

u=x^2+a^2

então

du=2xdx

Mas agora, como q eu substituo se tem o x la pra incomodar??


De fato, você usará uma substituição. Entretanto, a ideia é usar uma substituição para obter a seguinte integral básica:

\int \frac{1}{u^2 + 1}\,du = \,\textrm{arctg}\,u + c

Considere então a integral que você deseja calcular. Dividindo o numerador e o denominador do integrando por a², temos que:

\int \frac{1}{x^2+a^2}\,dx = \int \frac{\frac{1}{a^2}}{\frac{x^2}{a^2} + 1}\,dx

= \frac{1}{a^2}\int \frac{1}{\left(\frac{x}{a}\right)^2 + 1}\,dx

Agora use a substituição u=\frac{x}{a} e tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [INTEGRAL INDEFINIDA] Substituição

Mensagempor fabriel » Qua Out 03, 2012 15:15

entendi pensei nisso ai mesmo, mas achei eu achei q estava indo para um caminho errada, ou muito difícil, Obrigado!! Valeu Luiz :-D

u=\frac{x}{a}

du = \frac{1}{a}dx

\frac{1}{a^2}\int_{}^{}\frac{1}{\left(\frac{x}{a} \right)^2+1}dx=\frac{a}{a^2}\int_{}^{}\frac{1}{u^2+1}du=\frac{1}{a}arctg (u) +c = \frac{1}{a}arctg\left(\frac{x}{a} \right)+c
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.