• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação irracional

Equação irracional

Mensagempor PeterHiggs » Sex Set 28, 2012 12:33

Resolver a equação: \sqrt[3]{x+1}-\sqrt[3]{x-1} = \sqrt[6]{x^2-1}

Resposta: S = \left \{ \frac{\srqt{5}}{2}; \frac{-\sqrt{5}}{2}  \right \}

Sei que é uma questão simples, mas, ao tentar resolver, acabei não conseguindo mesmo chegar a um resultado. Sobravam sempre as raízes cúbicas, não consegui sair desse impasse. Alguém pode me ajudar nessa simples e interessante questão de equações irracionais ?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação irracional

Mensagempor young_jedi » Sex Set 28, 2012 16:19

\sqrt[3]{x+1}-\sqrt[3]{x-1}=\sqrt[6]{x+1}.\sqrt[6]{x-1}

\sqrt[6]{x+1}.\sqrt[6]{x+1}-\sqrt[6]{x-1}.\sqrt[6]{x-1}=\sqrt[6]{x+1}.\sqrt[6]{x-1}

\frac{\sqrt[6]{x+1}.\sqrt[6]{x+1}}{\sqrt[6]{x+1}.\sqrt[6]{x-1}}-\frac{\sqrt[6]{x-1}.\sqrt[6]{x-1}}{\sqrt[6]{x+1}.\sqrt[6]{x-1}}=1

\sqrt[6]{\frac{x+1}{x-1}}-\sqrt[6]{\frac{x-1}{x+1}}=1

substituindo

y=\sqrt[6]{\frac{x+1}{x-1}}

y-\frac{1}{y}=1

y^2-y-1=0

y=\frac{1}{2}\pm\frac{\sqrt{5}}{2}

substituindo

\sqrt[6]{\frac{x+1}{x-1}}=\frac{1}{2}\pm\frac{\sqrt{5}}{2}

\frac{x+1}{x-1}=\frac{1}{2^6}.(1+6.\sqrt{5}+15.5+20.5\sqrt{5}+15.25+6.25.\sqrt{5}+125)

\frac{x+1}{x-1}=\frac{1}{64}.(576+256.\sqrt{5})

\frac{x+1}{x-1}=(9+4\sqrt{5})

x+1=9x+x.4\sqrt{5}-9-4\sqrt{5}

x(8+4\sqrt{5})=10+4\sqrt{5}

x=\frac{5+2\sqrt{5}}{4+2\sqrt{5}}

x=\frac{20-10\sqrt{5}+8\sqrt{5}-20}{16-20}

x=\frac{\sqrt{5}}{2}

fazendo para a outra raiz y encotra-se o outro valor de x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação irracional

Mensagempor PeterHiggs » Sex Set 28, 2012 22:14

Obrigado young_jedi !

Não era tão simples, não, hehe... !
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.