• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação irracional

Equação irracional

Mensagempor PeterHiggs » Sex Set 28, 2012 12:33

Resolver a equação: \sqrt[3]{x+1}-\sqrt[3]{x-1} = \sqrt[6]{x^2-1}

Resposta: S = \left \{ \frac{\srqt{5}}{2}; \frac{-\sqrt{5}}{2}  \right \}

Sei que é uma questão simples, mas, ao tentar resolver, acabei não conseguindo mesmo chegar a um resultado. Sobravam sempre as raízes cúbicas, não consegui sair desse impasse. Alguém pode me ajudar nessa simples e interessante questão de equações irracionais ?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação irracional

Mensagempor young_jedi » Sex Set 28, 2012 16:19

\sqrt[3]{x+1}-\sqrt[3]{x-1}=\sqrt[6]{x+1}.\sqrt[6]{x-1}

\sqrt[6]{x+1}.\sqrt[6]{x+1}-\sqrt[6]{x-1}.\sqrt[6]{x-1}=\sqrt[6]{x+1}.\sqrt[6]{x-1}

\frac{\sqrt[6]{x+1}.\sqrt[6]{x+1}}{\sqrt[6]{x+1}.\sqrt[6]{x-1}}-\frac{\sqrt[6]{x-1}.\sqrt[6]{x-1}}{\sqrt[6]{x+1}.\sqrt[6]{x-1}}=1

\sqrt[6]{\frac{x+1}{x-1}}-\sqrt[6]{\frac{x-1}{x+1}}=1

substituindo

y=\sqrt[6]{\frac{x+1}{x-1}}

y-\frac{1}{y}=1

y^2-y-1=0

y=\frac{1}{2}\pm\frac{\sqrt{5}}{2}

substituindo

\sqrt[6]{\frac{x+1}{x-1}}=\frac{1}{2}\pm\frac{\sqrt{5}}{2}

\frac{x+1}{x-1}=\frac{1}{2^6}.(1+6.\sqrt{5}+15.5+20.5\sqrt{5}+15.25+6.25.\sqrt{5}+125)

\frac{x+1}{x-1}=\frac{1}{64}.(576+256.\sqrt{5})

\frac{x+1}{x-1}=(9+4\sqrt{5})

x+1=9x+x.4\sqrt{5}-9-4\sqrt{5}

x(8+4\sqrt{5})=10+4\sqrt{5}

x=\frac{5+2\sqrt{5}}{4+2\sqrt{5}}

x=\frac{20-10\sqrt{5}+8\sqrt{5}-20}{16-20}

x=\frac{\sqrt{5}}{2}

fazendo para a outra raiz y encotra-se o outro valor de x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação irracional

Mensagempor PeterHiggs » Sex Set 28, 2012 22:14

Obrigado young_jedi !

Não era tão simples, não, hehe... !
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59