• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes

Matrizes

Mensagempor anneliesero » Ter Set 25, 2012 21:55

(PUC) Da equação matricial

\begin{pmatrix}
   x & 1    \\    
   1 & 2    \\ 
   
\end{pmatrix}


+


\begin{pmatrix}
   2 & y    \\    
   0 & -1    \\ 
   
\end{pmatrix}


=


\begin{pmatrix}
   3 & 2    \\    
   z & t    \\ 
   
\end{pmatrix}


resulta:


a) x=y=z=t=1

b) x=1, y=2, z=t=0

c) x=1, y=1 , z=3, t=2


d) x=2 , y = 0, z=2, t = 3


e) x=3/2, y=2, z=o, t= -2
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matrizes

Mensagempor MarceloFantini » Ter Set 25, 2012 22:28

Multiplique as matrizes do lado esquerdo e iguale os coeficientes com a matriz do lado direito.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matrizes

Mensagempor anneliesero » Qua Set 26, 2012 14:30

Está certo?

\begin{pmatrix}
   x & 1  \\ 
   1 & 2 
\end{pmatrix}


+

\begin{pmatrix}
   2 & y  \\ 
   0 & -1 
\end{pmatrix}

=

\begin{pmatrix}
   3 & 2  \\ 
   z & t 
\end{pmatrix}


Depois ficou assim


\begin{pmatrix}
   2x & 1y  \\ 
   1 & 1 
\end{pmatrix}

que é igual a

\begin{pmatrix}
   3 & 2  \\ 
   z & -2 
\end{pmatrix}

Então o

2x=3
x=3/2

y=2/1=2

t=-1

z= 1
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matrizes

Mensagempor MarceloFantini » Qua Set 26, 2012 17:10

Eu falei a operação errada: na verdade some as matrizes. O resultado final será

\begin{bmatrix} x+2 & 1+y \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ z & t \end{bmatrix}.

Basta igualar coeficiente a coeficiente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.