por mayconf » Dom Set 23, 2012 01:31
-
mayconf
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sex Set 21, 2012 12:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Dom Set 23, 2012 01:56
Multiplique e divida por

, simplifique e aplique o limite.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por mayconf » Dom Set 23, 2012 19:23
não consegui entender eu mutiplico por isto o
![\sqrt[]{25+3}-5 \sqrt[]{25+3}-5](/latexrender/pictures/4f7294e037f4795bf5af99538411c1b1.png)
e o "t" tbm??
-
mayconf
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sex Set 21, 2012 12:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Seg Set 24, 2012 01:41
Sim, pois você está usando o truque um número real dividido por ele mesmo é 1. A idéia é transformar o numerador numa diferença de quadrados, que ajudará a simplificar o termo "problemático" no denominador, e aplicar o limite de funções contínuas normalmente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por mayconf » Seg Set 24, 2012 02:50
brigadão ai Marcelo consegui vlw cara
-
mayconf
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sex Set 21, 2012 12:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Como resolver esse limite?
por samra » Sáb Mar 31, 2012 02:38
- 4 Respostas
- 3349 Exibições
- Última mensagem por fraol

Dom Abr 01, 2012 14:56
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver esse limite?
por duborgis » Sex Abr 06, 2012 13:29
- 12 Respostas
- 7385 Exibições
- Última mensagem por Fabio Wanderley

Dom Abr 08, 2012 16:04
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver esse problema?
por denfo » Sex Dez 04, 2009 13:22
- 1 Respostas
- 6513 Exibições
- Última mensagem por denfo

Qui Dez 10, 2009 20:16
Matemática Financeira
-
- Não sei como começar a resolver esse problema
por Sil » Ter Nov 02, 2010 19:36
- 5 Respostas
- 6038 Exibições
- Última mensagem por Sil

Ter Nov 02, 2010 21:40
Matemática Financeira
-
- como resolver esse tipo de conta?
por LuizCarlos » Seg Jul 11, 2011 00:43
- 11 Respostas
- 5843 Exibições
- Última mensagem por LuizCarlos

Ter Jul 12, 2011 20:00
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.