• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz completa e incompleta

Matriz completa e incompleta

Mensagempor GABRIELA » Seg Ago 31, 2009 17:54

Estou com dificuldade em matrizes completa e incompleta.
Veja um exemplo:
2x + y = 2
5x - y =1

Matriz incompleta \begin{pmatrix}
   2 & 1  \\ 
   5 & -1 
\end{pmatrix}

Matriz completa

\begin{pmatrix}
   5 & 2 & 2 \\ 
   5 & -1& 1

\end{pmatrix}
 
\end{pmatrix}

Não entendi a explicação do meu livro.
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz completa e incompleta

Mensagempor Molina » Seg Ago 31, 2009 21:34

Boa noite, Gabriela.

A matriz incompleta nada mais é do que a matriz formada pelos coeficientes das incógnitas do sistema proposto (note que os valores depois do sinal de igual não aparecem nessa matriz). Do mesmo modo, a matriz completa é matriz que se obtém acrescentando à matriz incompleta uma última coluna formada pelos termos independentes das equações do sitema (neste caso os valores após o sinal de igual aparecem na matriz).

No seu exemplo o que pode ter acontecido é algum erro de digitação, pois seu sistema é dado por:
2x + y = 2
5x - y  =1

Sendo assim, a Matriz incompleta deveria ser:

\begin{pmatrix}
   2 & 1  \\ 
   5 & -1 
\end{pmatrix}

e a Matriz completa:

\begin{pmatrix}
   2 & 1 & 2 \\ 
   5 & -1& 1

\end{pmatrix}

Espero ter ajudado, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matriz completa e incompleta

Mensagempor DouglasGordo » Seg Ago 31, 2009 21:41

A Matriz completa tem os coeficientes das variáveis e o termo independente, ou o resultado da equação. Você usa ela para fazer o escalonamento e resolver o sistema.

A Matriz imcompleta só tem os coeficientes das variáveis ae você multiplica ela pela matriz nx1 das variáveis e obtem o resultado:

\begin{pmatrix}
   2 & 1  \\ 
   5 & -1 
\end{pmatrix}.\begin{pmatrix}
   x  \\ 
   y 
\end{pmatrix}= 
\begin{pmatrix}
   2  \\ 
   1 
\end{pmatrix}

A mais utilizada mesmo é a completa para fazer o escalonamento.

Edit: resolvendo o exemplo por escalonamento:

\begin{pmatrix}
   2 & 1 & 2  \\ 
   5 & -1 & 1
\end{pmatrix}

Dividindo a linha 1 (L1) por 2:


\begin{pmatrix}
   1 & 1/2 & 1  \\ 
   5 & -1 & 1
\end{pmatrix}

L2-5L1 substituindo na L2:

\begin{pmatrix}
   1 & 1/2 & 1  \\ 
   0 & -7/2 & -4
\end{pmatrix}

Multiplicando a L2 por -2/7:

\begin{pmatrix}
   1 & 1/2 & 1  \\ 
   0 & 1 & 8/7
\end{pmatrix}

L1-1/2(L2) subs. na L1:

\begin{pmatrix}
   1 & 0 & 3/7  \\ 
   0 & 1 & 8/7
\end{pmatrix}

Logo 1x+0y=3/7
x=3/7
E também 0x+1y=8/7
y=8/7
Avatar do usuário
DouglasGordo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 30, 2007 22:08
Localização: Americana/Campinas-SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado Matemática UNICAMP
Andamento: cursando

Re: Matriz completa e incompleta

Mensagempor GABRIELA » Ter Set 01, 2009 13:53

molina escreveu:Boa noite, Gabriela.

A matriz incompleta nada mais é do que a matriz formada pelos coeficientes das incógnitas do sistema proposto (note que os valores depois do sinal de igual não aparecem nessa matriz). Do mesmo modo, a matriz completa é matriz que se obtém acrescentando à matriz incompleta uma última coluna formada pelos termos independentes das equações do sitema (neste caso os valores após o sinal de igual aparecem na matriz).

No seu exemplo o que pode ter acontecido é algum erro de digitação, pois seu sistema é dado por:
2x + y = 2
5x - y  =1

Sendo assim, a Matriz incompleta deveria ser:

\begin{pmatrix}
   2 & 1  \\ 
   5 & -1
\end{pmatrix}

Não entendi esse -1 (pensei que tinha que colocar um nº x que o valor seria 1 na segunda equação 5x-y= 1<- ) :$
e a Matriz completa
\begin{pmatrix}
   2 & 1 & 2 \\ 
   5 & -1& 1

\end{pmatrix}

Espero ter ajudado, :y:
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz completa e incompleta

Mensagempor Molina » Ter Set 01, 2009 14:05

GABRIELA escreveu:
molina escreveu:Boa noite, Gabriela.

A matriz incompleta nada mais é do que a matriz formada pelos coeficientes das incógnitas do sistema proposto (note que os valores depois do sinal de igual não aparecem nessa matriz). Do mesmo modo, a matriz completa é matriz que se obtém acrescentando à matriz incompleta uma última coluna formada pelos termos independentes das equações do sitema (neste caso os valores após o sinal de igual aparecem na matriz).

No seu exemplo o que pode ter acontecido é algum erro de digitação, pois seu sistema é dado por:
2x + y = 2
5x - y  =1

Sendo assim, a Matriz incompleta deveria ser:

\begin{pmatrix}
   2 & 1  \\ 
   5 & -1
\end{pmatrix}

Não entendi esse -1 (pensei que tinha que colocar um nº x que o valor seria 1 na segunda equação 5x-y= 1<- ) :$
e a Matriz completa
\begin{pmatrix}
   2 & 1 & 2 \\ 
   5 & -1& 1

\end{pmatrix}

Espero ter ajudado, :y:

Boa tarde, Gabriela.

Confirma, o -1 que você se refere é o elemento da matriz localizado na segunda linha e segunda coluna?

É -1, pois eu passo para a matriz os coeficientes (números) que estão junto com as letras x e y.

No caso desta expressão 5x-y= 1 o número ligado ao y está "camuflado", pois poderíamos escrever a mesma expressão da seguinte forma: 5x+(-1)y= 1. Entendeu?

Não sei se essa era sua dúvida, mas eu imaginei que era isso.

Em resumo: -y=(-1)y

Caso não seja isso, pergunte-me de novo, ok?

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matriz completa e incompleta

Mensagempor GABRIELA » Ter Set 01, 2009 14:19

ok!
Era isso mesmo.Obrigada! :-D
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?