• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz completa e incompleta

Matriz completa e incompleta

Mensagempor GABRIELA » Seg Ago 31, 2009 17:54

Estou com dificuldade em matrizes completa e incompleta.
Veja um exemplo:
2x + y = 2
5x - y =1

Matriz incompleta \begin{pmatrix}
   2 & 1  \\ 
   5 & -1 
\end{pmatrix}

Matriz completa

\begin{pmatrix}
   5 & 2 & 2 \\ 
   5 & -1& 1

\end{pmatrix}
 
\end{pmatrix}

Não entendi a explicação do meu livro.
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz completa e incompleta

Mensagempor Molina » Seg Ago 31, 2009 21:34

Boa noite, Gabriela.

A matriz incompleta nada mais é do que a matriz formada pelos coeficientes das incógnitas do sistema proposto (note que os valores depois do sinal de igual não aparecem nessa matriz). Do mesmo modo, a matriz completa é matriz que se obtém acrescentando à matriz incompleta uma última coluna formada pelos termos independentes das equações do sitema (neste caso os valores após o sinal de igual aparecem na matriz).

No seu exemplo o que pode ter acontecido é algum erro de digitação, pois seu sistema é dado por:
2x + y = 2
5x - y  =1

Sendo assim, a Matriz incompleta deveria ser:

\begin{pmatrix}
   2 & 1  \\ 
   5 & -1 
\end{pmatrix}

e a Matriz completa:

\begin{pmatrix}
   2 & 1 & 2 \\ 
   5 & -1& 1

\end{pmatrix}

Espero ter ajudado, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matriz completa e incompleta

Mensagempor DouglasGordo » Seg Ago 31, 2009 21:41

A Matriz completa tem os coeficientes das variáveis e o termo independente, ou o resultado da equação. Você usa ela para fazer o escalonamento e resolver o sistema.

A Matriz imcompleta só tem os coeficientes das variáveis ae você multiplica ela pela matriz nx1 das variáveis e obtem o resultado:

\begin{pmatrix}
   2 & 1  \\ 
   5 & -1 
\end{pmatrix}.\begin{pmatrix}
   x  \\ 
   y 
\end{pmatrix}= 
\begin{pmatrix}
   2  \\ 
   1 
\end{pmatrix}

A mais utilizada mesmo é a completa para fazer o escalonamento.

Edit: resolvendo o exemplo por escalonamento:

\begin{pmatrix}
   2 & 1 & 2  \\ 
   5 & -1 & 1
\end{pmatrix}

Dividindo a linha 1 (L1) por 2:


\begin{pmatrix}
   1 & 1/2 & 1  \\ 
   5 & -1 & 1
\end{pmatrix}

L2-5L1 substituindo na L2:

\begin{pmatrix}
   1 & 1/2 & 1  \\ 
   0 & -7/2 & -4
\end{pmatrix}

Multiplicando a L2 por -2/7:

\begin{pmatrix}
   1 & 1/2 & 1  \\ 
   0 & 1 & 8/7
\end{pmatrix}

L1-1/2(L2) subs. na L1:

\begin{pmatrix}
   1 & 0 & 3/7  \\ 
   0 & 1 & 8/7
\end{pmatrix}

Logo 1x+0y=3/7
x=3/7
E também 0x+1y=8/7
y=8/7
Avatar do usuário
DouglasGordo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 30, 2007 22:08
Localização: Americana/Campinas-SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado Matemática UNICAMP
Andamento: cursando

Re: Matriz completa e incompleta

Mensagempor GABRIELA » Ter Set 01, 2009 13:53

molina escreveu:Boa noite, Gabriela.

A matriz incompleta nada mais é do que a matriz formada pelos coeficientes das incógnitas do sistema proposto (note que os valores depois do sinal de igual não aparecem nessa matriz). Do mesmo modo, a matriz completa é matriz que se obtém acrescentando à matriz incompleta uma última coluna formada pelos termos independentes das equações do sitema (neste caso os valores após o sinal de igual aparecem na matriz).

No seu exemplo o que pode ter acontecido é algum erro de digitação, pois seu sistema é dado por:
2x + y = 2
5x - y  =1

Sendo assim, a Matriz incompleta deveria ser:

\begin{pmatrix}
   2 & 1  \\ 
   5 & -1
\end{pmatrix}

Não entendi esse -1 (pensei que tinha que colocar um nº x que o valor seria 1 na segunda equação 5x-y= 1<- ) :$
e a Matriz completa
\begin{pmatrix}
   2 & 1 & 2 \\ 
   5 & -1& 1

\end{pmatrix}

Espero ter ajudado, :y:
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz completa e incompleta

Mensagempor Molina » Ter Set 01, 2009 14:05

GABRIELA escreveu:
molina escreveu:Boa noite, Gabriela.

A matriz incompleta nada mais é do que a matriz formada pelos coeficientes das incógnitas do sistema proposto (note que os valores depois do sinal de igual não aparecem nessa matriz). Do mesmo modo, a matriz completa é matriz que se obtém acrescentando à matriz incompleta uma última coluna formada pelos termos independentes das equações do sitema (neste caso os valores após o sinal de igual aparecem na matriz).

No seu exemplo o que pode ter acontecido é algum erro de digitação, pois seu sistema é dado por:
2x + y = 2
5x - y  =1

Sendo assim, a Matriz incompleta deveria ser:

\begin{pmatrix}
   2 & 1  \\ 
   5 & -1
\end{pmatrix}

Não entendi esse -1 (pensei que tinha que colocar um nº x que o valor seria 1 na segunda equação 5x-y= 1<- ) :$
e a Matriz completa
\begin{pmatrix}
   2 & 1 & 2 \\ 
   5 & -1& 1

\end{pmatrix}

Espero ter ajudado, :y:

Boa tarde, Gabriela.

Confirma, o -1 que você se refere é o elemento da matriz localizado na segunda linha e segunda coluna?

É -1, pois eu passo para a matriz os coeficientes (números) que estão junto com as letras x e y.

No caso desta expressão 5x-y= 1 o número ligado ao y está "camuflado", pois poderíamos escrever a mesma expressão da seguinte forma: 5x+(-1)y= 1. Entendeu?

Não sei se essa era sua dúvida, mas eu imaginei que era isso.

Em resumo: -y=(-1)y

Caso não seja isso, pergunte-me de novo, ok?

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matriz completa e incompleta

Mensagempor GABRIELA » Ter Set 01, 2009 14:19

ok!
Era isso mesmo.Obrigada! :-D
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.