• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(Mackenzie) P.A. com P.G.

(Mackenzie) P.A. com P.G.

Mensagempor Rafael16 » Sáb Ago 04, 2012 14:19

Olá pessoal,

(Mackenzie) Se a sequência (2, 1/2, 4, 1/4, 6, 1/8, ...) é formada por termos de uma progressão aritmética alternados com os termos de uma progressão geométrica, então o produto do vigésimo pelo trigésimo primeiro termo dessa sequência é:

a){2}^{10}

b)\frac{1}{{2}^{8}}

c){2}^{15}

d){2}^{\frac{1}{20}}

e){2}^{\frac{1}{5}}


Percebi que os termos da P.A. ficam em posições ímpares.
então a posição 31 é uma P.A, e a posição 20 é uma P.G.

Cãlculo da P.A.

{a}_{n}={a}_{1}+(n-1)r

{a}_{31}=2+(31-1).2

{a}_{31}=62
____________________________________________
Cálculo da P.G.

{a}_{n}={a}_{1}.{q}^{n-1}

{a}_{20}=\frac{1}{2}.({\frac{1}{2}})^{19}

{a}_{20}=({\frac{1}{2}})^{20}
___________________________________________
Soma

{a}_{20}+{a}_{31}

{(\frac{1}{2})}^{20} + 62

Não sei se até onde fiz esta certo, mas também não sei como resolvo a soma, não tem como fatorar 62 para deixar com base 1/2

Valeu!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: (Mackenzie) P.A. com P.G.

Mensagempor MarceloFantini » Sáb Ago 04, 2012 16:45

Vamos escrever os termos da sequência da seguinte forma:

a_{2n-1} = 2+(n-1)2 para os termos ímpares;
a_{2n} = 2^{-n} para os termos pares.

Note então que a_{20} = a_{2 \cdot 10} = 2^{-10} e a_{31} = a_{2 \cdot 16 -1} = 2+(16-1)2 = 2+30=32 = 2^5.
Como a questão pede o produto de ambos, temos a_{20} \cdot a_{31} = 2^{-10} \cdot 2^5 = 2^{-5}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (Mackenzie) P.A. com P.G.

Mensagempor Guilherme35 » Qui Set 13, 2012 09:59

Eu fiquei com duvida nesse exercicio, se ele diz o a31 e o a20, o valor desses termos nao seriam reduzidos pela metade ja que eles estao alternados entre uma PA e uma PG. Ficou meio estranho nao, pois para achar a razão, ela nao conciderou a2-a1, ela fez 4-2 e isso seria a3-a1. a razão nao teria que ter cido usada naquela formula do primeiro menos o segundo? e ja que pula o item 2 nao teria que dividir por dois tbm o resultado do a31 da PA?
Guilherme35
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Set 12, 2012 15:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: Direito
Andamento: cursando

Re: (Mackenzie) P.A. com P.G.

Mensagempor MarceloFantini » Qui Set 13, 2012 10:20

Você está confundindo. Quando o enunciado diz que alterna entre progressão aritmética e geométrica, isto significa que alguns termos estão em progressão aritmética e outros em progressão geométrica, e não termos consecutivos! Apenas os termos pares satisfazem uma progressão aritmética e apenas os termos ímpares satisfazem uma progressão geométrica.

Logo, para considerar as equações de progressão aritmética você deve levar em conta apenas os termos com índice da forma 2n (pares) e para considerar as equações de progressão geométrica você deve levar em conta que apenas os termos com índice da forma 2n-1 (ímpares).

Não entendo o que quer dizer com o valor dos termos serem reduzidos pela metade devido ao fato que uma PA e PG é alternada.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}