• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos

Conjuntos

Mensagempor Felipe santos santos » Sex Set 07, 2012 16:43

Outras dúvidas em conjuntos :

Existe algum método para resolver questões onde é dado o numero de elementos do conjunto, como por exemplo na questão :

Denotemos por n(X) o número de elementos
de um conjunto finito X. Sejam A, B e C conjuntos
tais que n(A U B) = 8, n(A U C) = 9,
n(B U C) = 10, n(A U B U C) = 11 e
n(A ? B ? C) = 2. Então, n(A) + n(B) + n(C)
é igual a :

a) 11. b) 14. c) 15. d) 18. e) 25.

Eu não estou conseguindo desenvolver questões desse tipo .
Agradeço desde já.
Editado pela última vez por Felipe santos santos em Sex Set 07, 2012 17:47, em um total de 2 vezes.
Felipe santos santos
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Set 04, 2012 08:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vest
Andamento: cursando

Re: Conjuntos

Mensagempor MarceloFantini » Sex Set 07, 2012 17:54

É interessante lembrar da relação

n(A \cup B \cup C)
= n(A) + n(B) + n(C) - n(A \cup C) - n(B \cup C) - n(A \cup B) + n(A \cap B \cap C).

Usando isto, basta isolar n(A) + n(B) + n(C).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Conjuntos

Mensagempor Felipe santos santos » Sex Set 07, 2012 18:05

MarceloFantini escreveu:É interessante lembrar da relação

n(A \cup B \cup C)
= n(A) + n(B) + n(C) - n(A \cup C) - n(B \cup C) - n(A \cup B) + n(A \cap B \cap C).

Usando isto, basta isolar n(A) + n(B) + n(C).


Vlw cara , ajudo muito .
Felipe santos santos
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Set 04, 2012 08:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vest
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59