• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz e funções

Matriz e funções

Mensagempor Malorientado » Ter Set 04, 2012 00:31

Sendo f(x)= 5-3x+2x², calcule f(A) onde A=[1 2/3 -4]. Coloquei as linhas da matriz A separadas por /.
Devo colocar 5 * In na resolução? Por que?
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matriz e funções

Mensagempor LuizAquino » Ter Set 04, 2012 10:48

Malorientado escreveu:Sendo f(x)= 5-3x+2x², calcule f(A) onde A=[1 2/3 -4]. Coloquei as linhas da matriz A separadas por /.
Devo colocar 5 * In na resolução? Por que?


Note que f é uma função real. Ela recebe como entrada um número real e devolve como saída um outro número real. Mas A é uma matriz e não apenas um número real. Sendo assim, ao escrever f(A) não poderíamos simplesmente "substituir" x por A na função original devido ao número 5, pois ficaríamos com algo desse tipo: "5 - 3A + 2A²". E qual é o problema com essa expressão? Ora, A é uma matriz 2 por 2. Sendo assim, -3A e 2A² também serão matrizes 2 por 2. Mas o termo 5 é apenas um número. Sendo assim, ao escrever "5 - 3A + 2A²" você estaria dizendo para calcular a soma entre o número 5 e as matrizes -3A e 2A². Mas isso não faz sentido, pois o termo 5 também deveria ser uma matriz 2 por 2 para que a soma pudesse ser efetuada. Como contornar isso? Simples: por convenção "fingimos" que 5 é na verdade a matriz 5I, onde I é a matriz identidade de ordem 2 por 2.

Resumindo, para resolver o exercício basta efetuar a seguinte operação:

f(A) = 5\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} - 3\begin{bmatrix}1 & 2 \\ 3 & -4\end{bmatrix} + 2 \begin{bmatrix}1 & 2 \\ 3 & -4\end{bmatrix}\begin{bmatrix}1 & 2 \\ 3 & -4\end{bmatrix}

Agora tente continuar o exercício a partir daí.

Observação

Por favor, procure usar o LaTeX para digitar as notações de forma adequada.

Por exemplo, para digitar a matriz desejada basta usar o código:

Código: Selecionar todos
[tex]
\begin{bmatrix}
1 & 2 \\
3 & -4
\end{bmatrix}
[/tex]


O resultado desse código será:

\begin{bmatrix}
1 & 2 \\
3 & -4
\end{bmatrix}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz e funções

Mensagempor Malorientado » Ter Set 04, 2012 20:20

Professor mais uma vez obrigado!
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)