• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz Idempotentes

Matriz Idempotentes

Mensagempor cramos_err » Sex Ago 31, 2012 19:49

uma matriz quadrada é chamada de idempotentes se a²=a. Verifique que a matriz 1/3 |2 -1 -1|
|-1 2 -1|
|-1 -1 2|

é idempotente.
cramos_err
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Ago 31, 2012 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Matriz Idempotentes

Mensagempor LuizAquino » Sex Ago 31, 2012 19:58

cramos_err escreveu:uma matriz quadrada é chamada de idempotentes se a²=a. Verifique que a matriz 1/3 |2 -1 -1|
|-1 2 -1|
|-1 -1 2|

é idempotente.


Qual foi exatamente a sua dúvida? Basta calcular o produto A*A e conferir se isto é igual a própria matriz A.

Observação

Por favor, procure usar o LaTeX para digitar as notações de forma adequada.

Por exemplo, para digitar a matriz desejada basta usar o código:

Código: Selecionar todos
[tex]
\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}
[/tex]


O resultado desse código será:

\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz Idempotentes

Mensagempor cramos_err » Sex Ago 31, 2012 20:08

LuizAquino escreveu:
cramos_err escreveu:uma matriz quadrada é chamada de idempotentes se a²=a. Verifique que a matriz 1/3 |2 -1 -1|
|-1 2 -1|
|-1 -1 2|

é idempotente.


Qual foi exatamente a sua dúvida? Basta calcular o produto A*A e conferir se isto é igual a própria matriz A.

Observação

Por favor, procure usar o LaTeX para digitar as notações de forma adequada.

Por exemplo, para digitar a matriz desejada basta usar o código:

Código: Selecionar todos
[tex]
\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}
[/tex]


O resultado desse código será:

\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}



Me descupe, pois sou novo no forum.

Mais a minha dúvida é pq 1/3, tem como vc fazer esse execício, para eu ver como fica, é apenas um exemplo.

Agradeço desde já.
cramos_err
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Ago 31, 2012 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Matriz Idempotentes

Mensagempor LuizAquino » Sex Ago 31, 2012 20:46

cramos_err escreveu:Mais a minha dúvida é pq 1/3, tem como vc fazer esse execício, para eu ver como fica, é apenas um exemplo.


Ao invés de "lhe dar o peixe", eu vou lhe "ensinar a pescar". Eu mostrarei o caminho e você tenta seguir. Se você não conseguir terminar, então poste aqui até onde conseguiu avançar.

Note que esse 1/3 é apenas um escalar multiplicando toda a matriz. Lembre-se que multiplicar um escalar por uma matriz é apenas realizar a seguinte operação:

\frac{1}{3}\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & - \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}

Agora bastaria calcular o produto:

\begin{bmatrix} \frac{2}{3} & - \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}\begin{bmatrix} \frac{2}{3} & - \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}

Se o resultado desse produto for igual a matriz inicial, então a matriz é idempotente.

Mas ao invés de fazer por esse caminho, o mais interessante seria efetuar a seguinte arrumação:

\left(\frac{1}{3}\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)\cdot \left(\frac{1}{3}\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)=

= \left(\frac{1}{3}\cdot \frac{1}{3}\right)\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}

= \frac{1}{9} \begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}

Agora basta calcular o produto entre as matrizes e comparar com a inicial. Note que esse produto é bem mais simples do que aquele entre as matrizes anteriores.

Tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}