• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz Idempotentes

Matriz Idempotentes

Mensagempor cramos_err » Sex Ago 31, 2012 19:49

uma matriz quadrada é chamada de idempotentes se a²=a. Verifique que a matriz 1/3 |2 -1 -1|
|-1 2 -1|
|-1 -1 2|

é idempotente.
cramos_err
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Ago 31, 2012 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Matriz Idempotentes

Mensagempor LuizAquino » Sex Ago 31, 2012 19:58

cramos_err escreveu:uma matriz quadrada é chamada de idempotentes se a²=a. Verifique que a matriz 1/3 |2 -1 -1|
|-1 2 -1|
|-1 -1 2|

é idempotente.


Qual foi exatamente a sua dúvida? Basta calcular o produto A*A e conferir se isto é igual a própria matriz A.

Observação

Por favor, procure usar o LaTeX para digitar as notações de forma adequada.

Por exemplo, para digitar a matriz desejada basta usar o código:

Código: Selecionar todos
[tex]
\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}
[/tex]


O resultado desse código será:

\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz Idempotentes

Mensagempor cramos_err » Sex Ago 31, 2012 20:08

LuizAquino escreveu:
cramos_err escreveu:uma matriz quadrada é chamada de idempotentes se a²=a. Verifique que a matriz 1/3 |2 -1 -1|
|-1 2 -1|
|-1 -1 2|

é idempotente.


Qual foi exatamente a sua dúvida? Basta calcular o produto A*A e conferir se isto é igual a própria matriz A.

Observação

Por favor, procure usar o LaTeX para digitar as notações de forma adequada.

Por exemplo, para digitar a matriz desejada basta usar o código:

Código: Selecionar todos
[tex]
\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}
[/tex]


O resultado desse código será:

\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}



Me descupe, pois sou novo no forum.

Mais a minha dúvida é pq 1/3, tem como vc fazer esse execício, para eu ver como fica, é apenas um exemplo.

Agradeço desde já.
cramos_err
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Ago 31, 2012 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Matriz Idempotentes

Mensagempor LuizAquino » Sex Ago 31, 2012 20:46

cramos_err escreveu:Mais a minha dúvida é pq 1/3, tem como vc fazer esse execício, para eu ver como fica, é apenas um exemplo.


Ao invés de "lhe dar o peixe", eu vou lhe "ensinar a pescar". Eu mostrarei o caminho e você tenta seguir. Se você não conseguir terminar, então poste aqui até onde conseguiu avançar.

Note que esse 1/3 é apenas um escalar multiplicando toda a matriz. Lembre-se que multiplicar um escalar por uma matriz é apenas realizar a seguinte operação:

\frac{1}{3}\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & - \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}

Agora bastaria calcular o produto:

\begin{bmatrix} \frac{2}{3} & - \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}\begin{bmatrix} \frac{2}{3} & - \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}

Se o resultado desse produto for igual a matriz inicial, então a matriz é idempotente.

Mas ao invés de fazer por esse caminho, o mais interessante seria efetuar a seguinte arrumação:

\left(\frac{1}{3}\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)\cdot \left(\frac{1}{3}\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)=

= \left(\frac{1}{3}\cdot \frac{1}{3}\right)\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}

= \frac{1}{9} \begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}

Agora basta calcular o produto entre as matrizes e comparar com a inicial. Note que esse produto é bem mais simples do que aquele entre as matrizes anteriores.

Tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?