por Dankaerte » Qui Ago 27, 2009 14:19
A pirâmide de Quéops, em Gizé, no Egito, tem aproximadamente 90 raiz quadrada de 2 metros de altura, possui uma base quadrada e suas faces laterais são triângulos aquiláteros. Nessas condições, pode-se afirmar que, em metros, cada uma de suas arestas mede?
se alguém souber a fórmula e por ond começo para resolver esse exercício serei muito grato.
-
Dankaerte
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qua Ago 26, 2009 16:37
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Molina » Qui Ago 27, 2009 14:58
Dankaerte escreveu:A pirâmide de Quéops, em Gizé, no Egito, tem aproximadamente 90 raiz quadrada de 2 metros de altura, possui uma base quadrada e suas faces laterais são triângulos aquiláteros. Nessas condições, pode-se afirmar que, em metros, cada uma de suas arestas mede?
se alguém souber a fórmula e por ond começo para resolver esse exercício serei muito grato.
Boa tarde, amigo.
Não sei se é o modo mais fácil, mas eu faria assim:
Já que temos que a pirâmide é formada por triângulos equiláteros podemos escrever a altura em função do lado:

Essa fórmula é a altura do triângulo retângulo dos lados.
Não é a altura da pirâmide. Não podemos confundir a altura da pirâmide que é

e a altura do triângulo das faces, que é

Fazendo um desenho, vemos que podemos chegar em um triângulo retângulo dentro da pirâmide, onde um dos catetos é a altura do triângulo das faces, o outro cateto é

e a hipotenusa é

Usando Pitágoras:

Resolvendo, chegamos em

Espero ter ajudado.
Caso tenha dúvida em alguma parte, avise!
Bom estudo,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- preciso da Fórmula para resolver
por Dankaerte » Qui Ago 27, 2009 14:36
- 1 Respostas
- 5155 Exibições
- Última mensagem por Molina

Qui Ago 27, 2009 17:50
Estatística
-
- preciso de ajuda para resolver um exercicio sobre matrizes
por anabela » Sáb Nov 14, 2009 09:09
- 7 Respostas
- 7301 Exibições
- Última mensagem por Nelito

Seg Nov 16, 2009 16:56
Matrizes e Determinantes
-
- Preciso de uma explicação passo a passo para esse exercício
por Dankaerte » Qui Ago 27, 2009 14:24
- 0 Respostas
- 2261 Exibições
- Última mensagem por Dankaerte

Qui Ago 27, 2009 14:24
Sistemas de Equações
-
- É preciso saber limite para derivada e integral?
por mineirodointerior » Qui Out 15, 2015 00:34
- 2 Respostas
- 6881 Exibições
- Última mensagem por Cleyson007

Sáb Out 17, 2015 00:04
Cálculo: Limites, Derivadas e Integrais
-
- Preciso de ajuda com esse exercício
por Dankaerte » Qui Set 10, 2009 19:10
- 2 Respostas
- 6303 Exibições
- Última mensagem por Elcioschin

Ter Abr 13, 2010 14:01
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.