• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida - potenciação

Dúvida - potenciação

Mensagempor Danilo » Qua Ago 29, 2012 10:27

Qual é a melhor maneira de resolver uma potência do tipo {i}^{n}? É que vejo muitas pessoas dividindo a potência por 4 sendo o resto elevado ao número i. Por que isso afinal? Quais são as melhores maneiras de resolver isso? Eu sempre quebrei a potência dividindo por algum número qualquer e usei a propriedade {\left({i}^{n} \right)}^{s} mas vi que existem métodos muito mais simples. Gostaria que alguém me explicasse quais são os métodos e de onde vem os mesmos. Grato !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor e8group » Qua Ago 29, 2012 11:06

Desculpe ,mas não conseguir oq vc realmente quer . Seria isto ?


i^n =  i (i^{n-1} ) = \frac{i^{n+1}}{i}   = i^{n/4} \cdot  i^{3n/4} . Teria como postar um exercício para estudarmos seu expoente .

Na minha opinião não devemos limitar os modos de lidar com o expoente ,devemos adaptar todos eles a uma situação que nos leve a uma solução .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor LuizAquino » Qua Ago 29, 2012 11:34

Danilo escreveu:Qual é a melhor maneira de resolver uma potência do tipo {i}^{n}? É que vejo muitas pessoas dividindo a potência por 4 sendo o resto elevado ao número i. Por que isso afinal? Quais são as melhores maneiras de resolver isso? Eu sempre quebrei a potência dividindo por algum número qualquer e usei a propriedade {\left({i}^{n} \right)}^{s} mas vi que existem métodos muito mais simples. Gostaria que alguém me explicasse quais são os métodos e de onde vem os mesmos.


Usar esse método do resto da divisão por 4 é uma boa estratégia.

Ela é a estratégia padrão para esse tipo de exercício, mas é claro que você pode usar outras.

Para entendê-la, primeiro lembre-se que i^4 = 1.

Em seguida, considere um número natural n. Dividindo n por 4 obtemos um quociente q e um resto r (ou seja, n = 4q + r). Desse modo, temos que:

i^{n} = i^{4q+r} =\left(i^4\right)^q\cdot i^r = 1^q \cdot i^r = i^r

Resumindo: calcular i^n é o mesmo que calcular i^r, onde r é resto da divisão do natural n por 4.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida - potenciação

Mensagempor Danilo » Qua Ago 29, 2012 11:37

santhiago escreveu:Desculpe ,mas não conseguir oq vc realmente quer . Seria isto ?


i^n =  i (i^{n-1} ) = \frac{i^{n+1}}{i}   = i^{n/4} \cdot  i^{3n/4} . Teria como postar um exercício para estudarmos seu expoente .

Na minha opinião não devemos limitar os modos de lidar com o expoente ,devemos adaptar todos eles a uma situação que nos leve a uma solução .



Então, é tipo: Como resolver {i}^{2578}{i}^{2578} ? Um dos métodos que eu descobri recentemente, seria dividir 2578 por 4 e resto desta divisão, vira o expoente de i. Minha pergunta é: Quais são as maneiras de resolver, por exemplo, {i}^{2578}{i}^{2578} ? E por que quando efetuamos a divisão por 4, elevar o resto da divisão a i? É isso!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor Danilo » Qua Ago 29, 2012 11:41

LuizAquino escreveu:
Danilo escreveu:Qual é a melhor maneira de resolver uma potência do tipo {i}^{n}? É que vejo muitas pessoas dividindo a potência por 4 sendo o resto elevado ao número i. Por que isso afinal? Quais são as melhores maneiras de resolver isso? Eu sempre quebrei a potência dividindo por algum número qualquer e usei a propriedade {\left({i}^{n} \right)}^{s} mas vi que existem métodos muito mais simples. Gostaria que alguém me explicasse quais são os métodos e de onde vem os mesmos.


Usar esse método do resto da divisão por 4 é uma boa estratégia.

Ela é a estratégia padrão para esse tipo de exercício, mas é claro que você pode usar outras.

Para entendê-la, primeiro lembre-se que i^4 = 1.

Em seguida, considere um número natural n. Dividindo n por 4 obtemos um quociente q e um resto r (ou seja, n = 4q + r). Desse modo, temos que:

i^{n} = i^{4q+r} =\left(i^4\right)^q\cdot i^r = 1^q \cdot i^r = i^r

Resumindo: calcular i^n é o mesmo que calcular i^r, onde r é resto da divisão do natural n por 4.


Perfeito !!!!! Obrigado!!! Professor, poderia me passar um outro método qualquer?
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor e8group » Qua Ago 29, 2012 12:29

Danilo , muito interessante este método . A parti de hoje fui apresentado ao mesmo . Abraços .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor LuizAquino » Qua Ago 29, 2012 18:15

Danilo escreveu:Professor, poderia me passar um outro método qualquer?


Uma outra maneira de fazer seria usando a Fórmula de Moivre. Vide a página abaixo:

Fórmulas de Moivre - Brasil Escola
http://www.brasilescola.com/matematica/ ... moivre.htm

Danilo escreveu:Então, é tipo: Como resolver {i}^{2578}{i}^{2578} ? Um dos métodos que eu descobri recentemente, seria dividir 2578 por 4 e resto desta divisão, vira o expoente de i. Minha pergunta é: Quais são as maneiras de resolver, por exemplo, {i}^{2578}{i}^{2578} ? E por que quando efetuamos a divisão por 4, elevar o resto da divisão a i? É isso!


No caso específico desse exercício, seria mais simples usar a seguinte estratégia:

{i}^{2.578}{i}^{2.578} = \left(i^2\right)^{2.578} = \left(-1\right)^{2.578} = 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D