• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação

Simplificação

Mensagempor Danilo » Ter Ago 14, 2012 15:57

Se a>0, mostre que:

\frac{1}{{a}^{\frac{1}{4}} + {a}^{\frac{1}{8}} + 1 } + \frac{1}{{1}^{\frac{1}{4}} - {a}^{\frac{1}{8}} + 1} - \frac{2\left({a}^{\frac{1}{4} } - 1 \right)}{{a}^{\frac{1}{2}} - {a}^{\frac{1}{4}} + 1 } = \frac{4}{a + \sqrt[]{a} + 1}

comecei tentando:

\frac{1}{\sqrt[4]{a} + \sqrt[8]{a} + 1} + \frac{1}{\sqrt[4]{a} - \sqrt[8]{a} + 1} - \frac{2\left(\sqrt[4]{a} - 1 \right)}{\sqrt[]{a} - \sqrt[4]{a} + 1} =

E eu meio que travo aqui. O ideal seria racionalizar cada fração? Ou tirar o mmc? Se eu tenho que tirar o mmc, como eu faria neste caso?

obs: Há algum problema de eu fazer várias perguntas (em um curto intervalo de tempo) mesmo sendo cada pergunta em cada tópico?
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Simplificação

Mensagempor e8group » Ter Ago 14, 2012 17:34

Já tentou completar quadrados no denominador ?

EX.: (a^{1/4} + a^{1/8} +1) = (a^{1/8} +1)^2 - a^{1/8} .Tente começar assim ,acho que fica mais fácil .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.