• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Logarítmica - Polinômio

Equação Logarítmica - Polinômio

Mensagempor Rafael16 » Qua Ago 08, 2012 13:19

Boa tarde :-D

{log}_{2}(x-1) + {log}_{4}(x-3)={log}_{4}(x-1) --> Mudei a base do primeiro logaritmo para 4

2.{log}_{4}(x-1)+{log}_{4}(x-3)={log}_{4}(x-1)

{log}_{4}[(x-1)^2(x-3)]={log}_{4}(x-1) --> Cancelando os log, cheguei no polinômio

x^3-5x^2+6x-2=0

Não estudei polinômios ainda. Gostaria de saber se até onde cheguei esta certo, e também, se tem uma outra forma de resolver isso?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Equação Logarítmica - Polinômio

Mensagempor e8group » Qua Ago 08, 2012 15:17

Boa tarde , você estar certo mas veja que interessante ,




2log_4(x-1) + log_4(x-3) =log_4(x-1)

log_4\left[\frac{(x-1)^2 \cdot(x-3)}{(x-1)}\right] =0  ;  x\neq 1


\implies log_4\left[(x-1)\cdot(x-3)\right] =0



Agora basta você resolver isto ,


(x-1)(x-3) = 1
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação Logarítmica - Polinômio

Mensagempor e8group » Qua Ago 08, 2012 15:43

A maneira a qual você resolveu estar correta também , entretanto há um risco de você comete um erro assumindo x= 1 .


Veja :


log_4((x-1)^2(x-3)) = log_4(x-1)


4^{log_4((x-1)^2(x-3))} = 4^{log_4(x-1)}


\implies (x-1)^2(x-3) - (x-1) = 0

(x-1)\left[(x-1)(x-3) -1 \right]


Agora perceba que ,

x-1 \neq 0 .Logo ,


(x-1)(x-3) -1 = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.