por Danilo » Ter Ago 07, 2012 14:51
Empacado em um exercício !
Se z1 e z2 são números complexos, z1+z2 e z1

z2 são ambos reais, o que se pode afirmar sobre z1 e z2?
Bom, sei que a resposta é z1= conjugado de z2 (eu não encontrei o símbolo para conjugado) ou z1 e z2 são reais, mas eu não entendi porquê.
Sei que para que os números complexos sejam reais, a parte imaginária tem de ser igual a zero. Chamando de z1 = a+bi e o conjugado de z2 = a-bi (já que z e o conjugado de z2 são iguais) nao vejo como a parte imaginária seja igual a zero, pois fazendo z1 = conjugado de z2 temos que (ao meu ver) a+bi = a-bi então a parte imaginária não se anula. Onde estou errando?
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Ter Ago 07, 2012 16:18
Não sei se é o procedimento correto , mas vamos lá .
Sejam

e

,onde :


Mas como sabemos as Operações Aritméticas acima denota um número real ,assim utilizando a definição descrevemos que ,
onde a notação( * ) denota o conjugado .
Agora sejam , z_ 1 e z_ 2 dos seguintes formatos ,
Assim obtemos a sguinte relação ,
logo você chegara em

e

.Portanto ,

e

ou seja ,

-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Russman » Ter Ago 07, 2012 19:17
Basta você tomar, por exemplo

e efetuar

Como ambos são reais, então

.
Da primeira,

e , então

( fazendo a substituição) pois

tem de ser diferente de zero para

ser complexo.
Logo,

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por LuizAquino » Qua Ago 08, 2012 11:38
Danilo escreveu:Empacado em um exercício !
Se z1 e z2 são números complexos, z1+z2 e z1

z2 são ambos reais, o que se pode afirmar sobre z1 e z2?
Bom, sei que a resposta é z1= conjugado de z2 (eu não encontrei o símbolo para conjugado) ou z1 e z2 são reais, mas eu não entendi porquê.
Sei que para que os números complexos sejam reais, a parte imaginária tem de ser igual a zero. Chamando de z1 = a+bi e o conjugado de z2 = a-bi (já que z e o conjugado de z2 são iguais) nao vejo como a parte imaginária seja igual a zero, pois fazendo z1 = conjugado de z2 temos que (ao meu ver) a+bi = a-bi então a parte imaginária não se anula. Onde estou errando?
Prezado
Danilo,
Por favor, ao criar seu tópico coloque-o na seção adequada.
Esse seu tópico estava na seção
"Álgebra Elementar". Ele foi movido para esta seção:
"Números Complexos".
Atenciosamente,
Equipe de Moderadores.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Números complexos] Dúvida
por iceman » Qui Mai 10, 2012 18:52
- 5 Respostas
- 3604 Exibições
- Última mensagem por fraol

Qui Mai 10, 2012 21:15
Números Complexos
-
- Números Complexos - Dúvida
por iceman » Ter Mai 15, 2012 20:22
- 1 Respostas
- 1735 Exibições
- Última mensagem por fraol

Ter Mai 15, 2012 22:20
Números Complexos
-
- Dúvida - Números complexos
por Danilo » Sex Ago 03, 2012 02:05
- 5 Respostas
- 3687 Exibições
- Última mensagem por Danilo

Sex Ago 03, 2012 16:46
Números Complexos
-
- Números complexos {dúvida}
por Danilo » Dom Ago 26, 2012 19:59
- 4 Respostas
- 3501 Exibições
- Última mensagem por MarceloFantini

Sex Set 21, 2012 23:53
Números Complexos
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 16140 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.