• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Arcos Notáveis

Arcos Notáveis

Mensagempor andersonlopes_bg » Qua Ago 01, 2012 18:34

O exercício é para calcular o sen sen \frac{\pi}{10} consegui calcular sen \frac{\pi}{10} = \frac{\sqrt[2]{5}-1}{4} e cos \frac{\pi}{10} = \frac{\sqrt[2]{10+2\sqrt[2]{5}}}{4}, a tangente fica igual a = \frac{\sqrt[2]{5}-1}{\sqrt[2]{10+2\sqrt[2]{5}}} mas não consigo simplificar a resposta que é \frac{\sqrt[2]{25-10\sqrt[2]{5}}}{5}. Obrigado!
andersonlopes_bg
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Set 30, 2011 20:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informática
Andamento: formado

Re: Arcos Notáveis

Mensagempor Russman » Qua Ago 01, 2012 20:59

Basta você multiplicar a tangente por

\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{10-2\sqrt{5}}}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Arcos Notáveis

Mensagempor MarceloFantini » Qua Ago 01, 2012 21:46

Isto não resolverá. Note também que http://www.wolframalpha.com/input/?i=%28sqrt+%285%29+-+1%29%2F%28sqrt%2810+%2B+2+sqrt%285%29%29%29+%3D%3D+%28sqrt%2825+%2B+10+sqrt%285%29%29%29%2F%285%29 , ou seja, aparentemente seu resultado está errado ou o gabarito. Poderia colocar como encontrou o valor de \textrm{sen } \frac{\pi}{10}? Talvez tenha errado nestas contas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Arcos Notáveis

Mensagempor Russman » Qui Ago 02, 2012 09:51

Não, o seno foi calculado certo.

É conhecido que que o Triângulo Isósceles Dourado, isto é, um triângulo Isósceles que o quociente entre seu maior lado e menor é a Razão Dourada, tem o ângulo de vértice iguala 36 graus e os de base 72 graus.

Assim,

sin(\frac{36}{2}=18) = sin(\frac{\pi }{10}) =\frac{\left [ base \right ]}{2\left [ lado \right ]} \equiv  \frac{1}{2\varphi }

Como \varphi =\frac{1+\sqrt{5}}{2}, segue o resultado

sin(\frac{\pi }{10}) =\frac{-1+\sqrt{5}}{4}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Arcos Notáveis

Mensagempor Russman » Qui Ago 02, 2012 09:55

Pensando melhor, para simplificar a tangente eu suponho multiplicar primeiro por

\frac{\sqrt{(10+2\sqrt{5})}}{\sqrt{(10+2\sqrt{5})}}
pra nos livrarmos da raíz quadrada.

Em seguida, multiplique por

\frac{10-2\sqrt{5}}{10-2\sqrt{5}}.

Então vai obter a resposta.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Arcos Notáveis

Mensagempor Russman » Qui Ago 02, 2012 10:24

Vou tentar simplificar/racionalizar aqui e já posto o que eu obtive.
Editado pela última vez por Russman em Qui Ago 02, 2012 10:27, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Arcos Notáveis

Mensagempor Russman » Qui Ago 02, 2012 10:26

O processo é bem longo, mas felizmente obtemos a resposta esperada.

CodeCogsEqn.gif
CodeCogsEqn.gif (6.65 KiB) Exibido 1890 vezes


Agora, seja x=\frac{\left (12\sqrt{5}-20  \right )\sqrt{10+2\sqrt{5}}}{80}, então

x^2 = \frac{\left (12\sqrt{5}-20  \right )^2 \left (10+2\sqrt{5}  \right )}{6400} = \frac{1}{6400}160.8(5-2\sqrt{5})\Rightarrow x = \sqrt{\frac{5-2\sqrt{5}}{5}} = \frac{\sqrt{5-2\sqrt{5}}}{\sqrt{5}}\cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{25-10\sqrt{5}}}{5}

que é o resultado que bate com o gabarito.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Arcos Notáveis

Mensagempor andersonlopes_bg » Qui Ago 02, 2012 12:21

Vixe! Não conseguiria chegar a esse resultado rsrs... Obrigado!!
andersonlopes_bg
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Set 30, 2011 20:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.