• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Plano

Plano

Mensagempor Claudin » Seg Jul 16, 2012 04:21

Determine a equação do plano que contém o ponto (3,1,1) e a reta

\begin{cases} x=2+t \\ y=1+3t \\ z=-1+2T \end{cases}


O que tenho que fazer?
Editado pela última vez por Claudin em Seg Jul 16, 2012 04:56, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Russman » Seg Jul 16, 2012 04:36

Selecione um ponto qualquer da reta. Com este, construa um vetor que o lige ao ponto que deve pertencer ao plano. Este vetor em conjunto com o diretor da reta são os diretores do plano!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 02:58

Transformei na seguinte equação:

\frac{x-2}{1}=\frac{y-1}{3}=\frac{z+1}{2}

Como ponto qualquer então poderia ser: P_1(2,1,-1)

Considerando P(3,1,1)
Calculei PP_1=(-1,0,-2)

O que devo fazer agora, não compreendi como juntar os dois vetores?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor MarceloFantini » Ter Jul 17, 2012 03:55

A equação do plano será

\pi : \begin{cases} x= 2 +t -s \\ y=1+3t \\ z =-1 +2t -2s \end{cases}.

Note que o vetor encontrado tornou-se um vetor diretor do plano.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Plano

Mensagempor Russman » Ter Jul 17, 2012 04:28

Claudin escreveu:O que devo fazer agora, não compreendi como juntar os dois vetores?


A equação vetorial do plano é

\overrightarrow{r}(t,s)=\overrightarrow{r_{0}}+t.\overrightarrow{v_{1}}+s. \overrightarrow{v_{2}},

onde \overrightarrow{r_{0}}, \overrightarrow{v_{1}} e \overrightarrow{v_{2}} são vetores constantes e os dois últimos os diretores do plano. A variáveis s e t são parêmetros. Você ja deve saber disso.

Um dos vetores diretores, por exemplo, \overrightarrow{v_{1}} você ja tem, que é o diretor da reta. Agora, com o ponto, você precisa calcular \overrightarrow{v_{2}}.
Você já o fez. Calculou

\overrightarrow{v_{2}} = (-1,0-2).


Logo:

\overrightarrow{r}(t,s)=\overrightarrow{r_{0}}+t.\overrightarrow{v_{1}}+s. \overrightarrow{v_{2}}\Rightarrow \overrightarrow{r}(t,s) = \begin{bmatrix}
2\\ 
1\\ 
-1
\end{bmatrix}+ t.\begin{bmatrix}
1\\ 
3\\ 
2
\end{bmatrix}+s.\begin{bmatrix}
-1\\ 
0\\ 
-2
\end{bmatrix}.

Portanto o plano é:

\left\{\begin{matrix}
x=2+t-s\\ 
y = 1+3t\\ 
z-1+2t-2s
\end{matrix}\right.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 18:36

A equação acima está na forma paramétrica, porém o gabarito a equação está na forma cartesiana, para passar para a forma cartesiana deve-se isolar o vetor diretor, porém na hora de isolar o vetor diretor "s", sobra o valor de "t", ai não sei como passar para a forma cartesiana.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Russman » Ter Jul 17, 2012 18:59

Para escrever a equação na forma cartesiana, se você tem a forma paramétrica, você deve calcular o vetor normal ao plano. Este é dado por:

\overrightarrow{N }= k(\overrightarrow{v_{1}}\times  \overrightarrow{v_{2} }),

onde k é um escalar real qualquer e os vetores são os diretores do plano.

Como o vetor normal e um ponto você já sabe como identificar a equação cartesiana so plano!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Plano

Mensagempor Claudin » Sex Jul 20, 2012 03:06

Portanto iria calcular o vetor normal entre: v_1=(1,3,2) e v_2=(-1,0,-2) que resultaria em (-2,0,1)

E substituindo o ponto (2,1,-1) na equação do plano resultaria em 2x-z=5

certo?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor MarceloFantini » Sex Jul 20, 2012 03:10

Certo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Plano

Mensagempor Claudin » Sex Jul 20, 2012 03:39

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?