• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite Com Duas Variáveis] - Simplificação de Fração

[Limite Com Duas Variáveis] - Simplificação de Fração

Mensagempor Vitor2+ » Dom Jul 08, 2012 03:19

Olá! Gostaria de uma ajuda para resolver uma questão de limite com duas variáveis. O meu maior problema é saber como faço a fatoração das frações para sair da indeterminação do tipo 0/0.

QUESTÃO
\lim_{(x,y)\rightarrow(2,0)}\frac{\sqrt[]{2x-y}-2}{2x-y-4}

Conforme o site WolframAlpha, a resposta da questão é: \frac{1}{\sqrt[]{y}+2}, entretanto, o site não indica o passo a passo. Somente desejo saber como faço para simplificar esta fração. Agradeço.
Vitor2+
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Nov 14, 2011 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite Com Duas Variáveis] - Simplificação de Fração

Mensagempor MarceloFantini » Dom Jul 08, 2012 06:21

Note que \frac{\sqrt{2x-y} -2}{2x-y -4} \cdot \frac{\sqrt{2x-y}+2}{\sqrt{2x-y}+2} = \frac{2x-y-4}{(2x-y-4)(\sqrt{2x-y}+2)} = \frac{1}{\sqrt{2x-y}+2}.

Aplicando o limite, vem que \lim_{(x,y) \to (2,0)} \frac{\sqrt{2x-y}-2}{2x-y-4} = \frac{1}{\sqrt{2\cdot2-0}+2} = \frac{1}{4}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite Com Duas Variáveis] - Simplificação de Fração

Mensagempor Vitor2+ » Dom Jul 08, 2012 11:48

Muito obrigado. Obrigado mesmo.
Vitor2+
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Nov 14, 2011 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)