• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parábola

Parábola

Mensagempor Claudin » Qui Jul 05, 2012 19:52

Determine e identifique o lugar geométrico dos pontos equidistantes da reta y-7=0 e do ponto (3,2) e determine o vértice e a equação do eixo.

Gostaria de saber como iniciar esse exercício, em que tenho uma reta e um ponto.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor Russman » Qui Jul 05, 2012 22:44

SUponha qe esse ponto é P=(a,b). Calcule a distancia do mesmo até o ponto e do mesmo até a reta. Em seguida, iguale as duas. Veja o que você obtem!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Parábola

Mensagempor Claudin » Sex Jul 06, 2012 11:44

A distancia do ponto a reta deu

\frac{5\sqrt[]{13}}{13}
e depois o que fazer
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor Russman » Sex Jul 06, 2012 16:48

Russman escreveu:SUponha qe esse ponto é P=(a,b). Calcule a distancia do mesmo até o ponto e do mesmo até a reta. Em seguida, iguale as duas. Veja o que você obtem!


Distancia de (3,2) a P(x,y):

d_{1}^{2} = (x-3)^{2} + (y-2)^{2}

Distância entre a reta y-7=0 e P(x,y):

d_{2}=\frac{\left | y-7 \right |}{\left | 1 \right |}=\left | y-7 \right | \Rightarrow d_{2}^{2}=\left (y-7  \right )^{2}.

Agora, como d_{1} = d_{2}, então d_{1}^{2} = d_{2}^{2} e , logo,

(x-3)^{2} + (y-2)^{2} = \left (y-7  \right )^{2}.

Agora desenvolva, estude a função e determine o lugar geométrico, isto é, a superfície plana tal que satisfaz a condição do problema.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.