• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada com expoente fracionário.

Derivada com expoente fracionário.

Mensagempor matematicouff » Seg Jun 18, 2012 02:39

Estou com problemas com relação à derivada de funções com expoente fracionário. Por exemplo; dada a função f(x)=(x-1){x}^{\frac{2}{3}} sua derivada primeira é {f}^{\prime}(x)=\frac{5x-2}{{3x}^{\frac{1}{3}}} e sua derivada segunda é {f}^{\prime\prime}(x)=\frac{2(5x+1)}{{9x}^{\frac{4}{3}}}. Como consigo chegar à esse resultado?
Obs: Meu problema não é derivar, porque sei fazer isso muito bem com os outros tipos de funções. O que quero saber é como mexer com esses expoentes fracionários para que fiquem da forma das respostas. Se der para explicar passo a passo a maneira correta de mexer com esses expoentes, ficaria muito grata!
matematicouff
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 29, 2012 15:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada com expoente fracionário.

Mensagempor e8group » Seg Jun 18, 2012 17:48

matematicouff ,Boa tarde .Recomendo que você estude propriedades de potenciação e radiciação ,o mesmo pode ser aprendido através destas videos aulas no respectivo link abaixo :

http://www.youtube.com/playlist?list=PL ... ature=plcp .

Mas lembre-se ! considerando a e b constantes não nulas , temos : \sqrt[b] {a} = a^{ \frac{1}{b} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.